
Le plan:

La Région des solutions possibles (X) est un espace borné. Donc la solution optimale existe. Elle se situe sur l'un des sommets de la Région des Solutions possibles (X)

Détermination de la solution optimale (A ou B) :

A/ Calculer la valeur de Z en chaque sommet et choisir ensuite la valeur la plus élevée :

Sommet	X1	X2	$Z=3000X_1+2000X_2$
Α	0	0	0
В	0	10	20.000
С	4	8	28.000
D	10	2	34.000
E	11	. 0	33.000

 $\begin{array}{c} D_1 \cap D_3 \\ D_2 \cap D_3 \end{array}$

La solution optimale = max $(Z_A; Z_B; Z_C; Z_D; Z_E)$ = Z_D = 34.000 Avec X_1 =10 et X_2 =2

B/ La méthode géométrique :

Il s'agit d'étudier le sens du déplacement de $Z=3000X_1+2000X_2$

- Tracer la droite Z qui passe par le sommet A. Donc, on pose Z = 0 Les coordonnées de cette droite sont : (0; 0) (2; -3)
- On augmente à chaque fois la valeur de Z et le dernier sommet de la Région de Solution Possibles (X) qui sera touché constitue la solution optimale.
- Comme le montre le graphe ci-après, c'est le sommet D qui est formé par $D_2 \cap D_3$

par D₂| ID₃