

جامعـة مولـود معمـري تيزي وزو +ه O∧هاا≼+ NC8N8∧ ه+ CHهC8O UNIVERSITÉ MOULOUD MAMMERI DE TIZI-OUZOU

Faculty of Sciences
Departement of Mathematics

TEACHING MATHEMATICS IN ENGLISH

Presented by: Ania ADIL, PhD

1. Roots

N-th roots:

In the expression $\sqrt[n]{x}$, the integer n is called the **index** and x is called the **radicand**.

 $\sqrt{.}$: the radical symbol or *radix*.

 \sqrt{x} : root x; square root x; the square root of x

 $\sqrt[3]{x}$: the cube root of x

 $\sqrt[4]{x}$: the fourth root of x

 $\sqrt[n]{x}$: the nth root of x

Examples:

 $\sqrt{16}$: the square root of sixteen is/equals four

 $\sqrt{17}$: the square root of seventeen

 $\sqrt[3]{8}$: the cube root of eight

 $\sqrt[5]{64}$: the fifth root of sixty-four

1. Examples

1=11+2(5-x): one equals eleven plus two times open parenthesis five minus x close parenthesis

 $\frac{\sqrt{z}+x}{5\sqrt{z}}$:

the square root of z plus x over the fifth root of x

 $(6-5)\times 4 + 4.7 - 2^3 + \frac{7}{10} \neq \sqrt{257}$:

six minus five in brackets times four plus four point seven minus two cubed plus seven tenths is not equal to the square root of two hundred fifty-seven

1. Examples

```
(1+2)\times 3 = 9: one plus two in parenthesis/brackets times three equals nine
(x+y)^2:
               x plus y all squared
(x/y)^2:
                x over y all squared
x^2+y^5:
                x squared plus y to the power of five
2^{x} :
                two to the power of x
x^2y^5:
                x squared times y to the power of five or x squared y to the power of five
                x plus y over x minus y
```

1. Examples

$(40 \times 0.8 + 5 - 7) \div 2 = 15$:	Forty times (nought) point eight, plus five minus seven,	all
	in brackets divided by two, equals fifteen.	

$\frac{(x+y)^2+7}{}.$	x plus y all squared plus seven over (divided by / on) y
$y-x^2$.	minus x squared

 $10 \times y^7$: ten times (multiplied by) y to the power of seven

$$\frac{x+11}{x^3} + 2x(5-x)$$
: x plus eleven over x cubed, plus two x times open parenthesis five minus x close parenthesis

Or x plus eleven over x cubed, plus two x times five minus x all in parenthesis

- \bullet f(x):
- \bullet F(x):
- \bullet f(x,y):
- \bullet f(x,y,z):
- y = f(x):
- f(2):
- \bullet $f: X \longrightarrow Y:$
- $f: x \longmapsto x^2 + 10; x \in \mathbb{R}$:
- $f(x) = x^2 + 10; x \in \mathbb{R} :$

- f(x): f of x or the function of x
- \bullet F(x):
- \bullet f(x,y):
- \bullet f(x,y,z):
- y = f(x):
- f(2):
- \bullet $f: X \longrightarrow Y:$
- $f: x \longmapsto x^2 + 10; x \in \mathbb{R}$:
- $f(x) = x^2 + 10; x \in \mathbb{R} :$

- \bullet f(x) : f of x or the function of x
- F(x) : Capital f of x
- \bullet f(x,y):
- \bullet f(x,y,z):
- y = f(x):
- f(2):
- \bullet $f: X \longrightarrow Y:$
- $f: x \longmapsto x^2 + 10; x \in \mathbb{R}$:
- $f(x) = x^2 + 10; x \in \mathbb{R}$:

- f(x) : f of x or the function of x
- \bullet F(x) : Capital f of x
- $\bullet \ f(x,y): f \ {\rm of} \ x,y \ {\rm or} \ f \ {\rm of} \ x {\rm and} \ y$
- \bullet f(x,y,z):
- y = f(x):
- \bullet f(2):
- \bullet $f: X \longrightarrow Y:$
- $f: x \longmapsto x^2 + 10; x \in \mathbb{R}$:
- $f(x) = x^2 + 10; x \in \mathbb{R}$:

- f(x) : f of x or the function of x
- \bullet F(x) : Capital f of x
- $\bullet \ f(x,y): f \ {\rm of} \ x,y \ {\rm or} \ f \ {\rm of} \ x {\rm and} \ y$
- f(x,y,z): f of x,y,z
- y = f(x):
- f(2):
- \bullet $f: X \longrightarrow Y:$
- $f: x \longmapsto x^2 + 10; x \in \mathbb{R}$:
- $f(x) = x^2 + 10; x \in \mathbb{R}$:

- f(x) : f of x or the function of x
- \bullet F(x) : Capital f of x
- $\bullet \ f(x,y): f \ {\rm of} \ x,y \ {\rm or} \ f \ {\rm of} \ x {\rm and} \ y$
- f(x,y,z): f of x,y,z
- y = f(x): y is a function of x or y equals f of x
- f(2):
- \bullet $f: X \longrightarrow Y:$
- $f: x \longmapsto x^2 + 10; x \in \mathbb{R}$:
- $f(x) = x^2 + 10; x \in \mathbb{R}$:

- f(x) : f of x or the function of x
- \bullet F(x) : Capital f of x
- $\bullet \ f(x,y): f \ {\rm of} \ x,y \ {\rm or} \ f \ {\rm of} \ x {\rm and} \ y$
- $\bullet \ f(x,y,z): f \ \text{of} \ x,y,z$
- ullet y=f(x):y is a function of x or y equals f of x
- ullet $f(2): f ext{ of } 2 ext{ or } f ext{ evaluated at } 2$
- \bullet $f: X \longrightarrow Y:$
- $f: x \longmapsto x^2 + 10; x \in \mathbb{R}$:
- $f(x) = x^2 + 10; x \in \mathbb{R}$:

- f(x): f of x or the function of x
- \bullet F(x) : Capital f of x
- $\bullet \ f(x,y): f \ {\rm of} \ x,y \ {\rm or} \ f \ {\rm of} \ x {\rm and} \ y$
- f(x, y, z): f of x, y, z
- ullet y=f(x):y is a function of x or y equals f of x
- \bullet f(2) : f of 2 or f evaluated at 2
- f: X

 Y: f maps X to Y or f from X to Y depending on the context.
- $f: x \longmapsto x^2 + 10; x \in \mathbb{R}$:
- $f(x) = x^2 + 10; x \in \mathbb{R}$:

- f(x): f of x or the function of x
- \bullet F(x) : Capital f of x
- $\bullet \ f(x,y): f \ {\rm of} \ x,y \ {\rm or} \ f \ {\rm of} \ x {\rm and} \ y$
- f(x, y, z): f of x, y, z
- y = f(x): y is a function of x or y equals f of x
- ullet $f(2): f ext{ of } 2 ext{ or } f ext{ evaluated at } 2$
- $f: X \longrightarrow Y: f$ maps X to Y or f from X to Y depending on the context.
- $f: x \longmapsto x^2 + 10; x \in \mathbb{R}: f \text{ maps } x \text{ onto } x \text{ squared plus } 10 \text{ where } x \text{ is a real number.}$
- $f(x) = x^2 + 10; x \in \mathbb{R}$:

- f(x): f of x or the function of x
- F(x) : Capital f of x
- \bullet $f(x,y): f ext{ of } x,y ext{ or } f ext{ of } x ext{ and } y$
- f(x, y, z) : f of x, y, z
- y = f(x): y is a function of x or y equals f of x
- ullet $f(2): f ext{ of } 2 ext{ or } f ext{ evaluated at } 2$
- $f: X \longrightarrow Y: f$ maps X to Y or f from X to Y depending on the context.
- $f: x \longmapsto x^2 + 10; x \in \mathbb{R}: f \text{ maps } x \text{ onto } x \text{ squared plus } 10 \text{ where } x \text{ is a real number.}$
- $f(x) = x^2 + 10; x \in \mathbb{R}$: f of x equals x squared plus 10 where x is a real number.

- \dot{y} :
- ÿ:
- y':
- \bullet y'' :
- \bullet y''' :
- $y^{(n)}$:
- \bullet f'(x):
- \bullet f''(x):
- $f^{(4)}(x)$:

- $\bullet \ \dot{y}: \ y \ \mathsf{dot}$
- ÿ:
- y':
- \bullet y'' :
- y''' :
- $y^{(n)}$:
- \bullet f'(x):
- \bullet f''(x):
- $f^{(4)}(x)$:

- \bullet \dot{y} : y dot
- \bullet \ddot{y} : y double dot
- y':
- \bullet y'' :
- y''' :
- $y^{(n)}$:
- \bullet f'(x):
- \bullet f''(x):
- $f^{(4)}(x)$:

- \bullet \dot{y} : y dot
- \bullet \ddot{y} : y double dot
- ullet y':y prime or first derivative of y
- y" :
- \bullet y''' :
- $y^{(n)}$:
- \bullet f'(x):
- f''(x):
- $f^{(4)}(x)$:

- \bullet \dot{y} : y dot
- \bullet \ddot{y} : y double dot
- ullet y':y prime or first derivative of y
- ullet y'': y double prime or second derivative of y
- y''' :
- $y^{(n)}$:
- \bullet f'(x):
- f''(x):
- $f^{(4)}(x)$:

- \dot{y} : y dot
- \bullet \ddot{y} : y double dot
- ullet y':y prime or first derivative of y
- $\bullet \ y'': y$ double prime or second derivative of y
- ullet $y^{\prime\prime\prime}:y$ triple prime or third derivative of y
- $y^{(n)}$:
- \bullet f'(x):
- \bullet f''(x):
- $f^{(4)}(x)$:

- \dot{y} : y dot
- \bullet \ddot{y} : y double dot
- ullet y':y prime or first derivative of y
- ullet y'': y double prime or second derivative of y
- $\bullet \ y^{\prime\prime\prime}$: y triple prime or third derivative of y
- $y^{(n)}$: nth derivative of y
- \bullet f'(x):
- \bullet f''(x):
- $f^{(4)}(x)$:

- \dot{y} : y dot
- \ddot{y} : y double dot
- ullet y':y prime or first derivative of y
- ullet y'': y double prime or second derivative of y
- ullet y''': y triple prime or third derivative of y
- $y^{(n)}$: nth derivative of y
- f'(x): f prime of x or the (first) derivative of f of x with respect to x
- \bullet f''(x):
- $f^{(4)}(x)$:

- \dot{y} : y dot
- \bullet \ddot{y} : y double dot
- y': y prime or first derivative of y
- ullet y'': y double prime or second derivative of y
- ullet $y^{\prime\prime\prime}:y$ triple prime or third derivative of y
- $y^{(n)}$: nth derivative of y
- f'(x) : f prime of x or the (first) derivative of f of x with respect to x
- f''(x) : f double prime of x or the second derivative of f of x with respect to x
- $f^{(4)}(x)$:

- \dot{y} : y dot
- \ddot{y} : y double dot
- ullet y':y prime or first derivative of y
- ullet y'': y double prime or second derivative of y
- ullet $y^{\prime\prime\prime}:y$ triple prime or third derivative of y
- $ullet y^{(n)}: n {
 m th} \ {
 m derivative} \ {
 m of} \ y$
- f'(x) : f prime of x or the (first) derivative of f of x with respect to x
- f''(x) : f double prime of x or the second derivative of f of x with respect to x
- $f^{(4)}(x)$: f four of x or the fourth derivative of f of x with respect to x

- $\frac{\mathrm{d}f}{\mathrm{d}t}$:
- $\bullet \ \frac{\mathrm{d}}{\mathrm{d}x}(x^2+1) :$
- $\bullet \ \frac{\mathrm{d}^2 f}{\mathrm{d}t^2} :$
- $\bullet \ \frac{\mathrm{d}^n f}{\mathrm{d} t^n} :$
- $\bullet \left. \frac{\mathrm{d}f}{\mathrm{d}t} \right|_{t=1}:$
- \bullet ∂v :
- $\bullet \ \frac{\partial f}{\partial t} :$
- $\bullet \ \frac{\partial^2 f}{\partial t^2} :$

- $\frac{\mathrm{d}f}{\mathrm{d}t}$: $\mathrm{d}f$ by $\mathrm{d}t$ or the derivative of f with respect to t.
- $\bullet \ \frac{\mathrm{d}}{\mathrm{d}x}(x^2+1):$
- $\bullet \ \frac{\mathrm{d}^2 f}{\mathrm{d}t^2} :$
- $\bullet \ \frac{\mathrm{d}^n f}{\mathrm{d} t^n} :$
- $\bullet \left. \frac{\mathrm{d}f}{\mathrm{d}t} \right|_{t=1} :$
- \bullet ∂v :
- $\frac{\partial f}{\partial t}$:
- $\bullet \ \frac{\partial^2 f}{\partial t^2} :$

- $\frac{\mathrm{d}f}{\mathrm{d}t}$: $\mathrm{d}f$ by $\mathrm{d}t$ or the derivative of f with respect to t.
- $\frac{\mathrm{d}}{\mathrm{d}x}(x^2+1)$: the derivative of x squared plus one with respect to x.
- \bullet $\frac{\mathrm{d}^2 f}{\mathrm{d}t^2}$:
- \bullet $\frac{\mathrm{d}^n f}{\mathrm{d}t^n}$:
- $\bullet \left. \frac{\mathrm{d}f}{\mathrm{d}t} \right|_{t=1}$:
- \bullet ∂v :
- \bullet $\frac{\partial f}{\partial t}$:
- \bullet $\frac{\partial^2 f}{\partial t^2}$:

- $\frac{\mathrm{d}f}{\mathrm{d}t}$: $\mathrm{d}f$ by $\mathrm{d}t$ or the derivative of f with respect to t.
- $\frac{\mathrm{d}}{\mathrm{d}x}(x^2+1)$: the derivative of x squared plus one with respect to x.
- $\frac{\mathrm{d}^2 f}{\mathrm{d}t^2}$: the second derivative of f with respect to t.
- \bullet $\frac{\mathrm{d}^n f}{\mathrm{d} t^n}$:
- $\bullet \left. \frac{\mathrm{d}f}{\mathrm{d}t} \right|_{t=1}$:
- ullet ∂v :
- $\frac{\partial f}{\partial t}$:
- \bullet $\frac{\partial^2 f}{\partial t^2}$:

- $\frac{\mathrm{d}f}{\mathrm{d}t}$: $\mathrm{d}f$ by $\mathrm{d}t$ or the derivative of f with respect to t.
- $\frac{\mathrm{d}}{\mathrm{d}x}(x^2+1)$: the derivative of x squared plus one with respect to x.
- $\frac{\mathrm{d}^2 f}{\mathrm{d}t^2}$: the second derivative of f with respect to t.
- $\frac{\mathrm{d}^n f}{\mathrm{d}t^n}$: the *n*th derivative of f with respect to t.
- $\bullet \left. \frac{\mathrm{d}f}{\mathrm{d}t} \right|_{t=1}$:
- \bullet ∂v :
- $\frac{\partial f}{\partial t}$:
- \bullet $\frac{\partial^2 f}{\partial t^2}$:

- $\frac{\mathrm{d}f}{\mathrm{d}t}$: $\mathrm{d}f$ by $\mathrm{d}t$ or the derivative of f with respect to t.
- $\frac{\mathrm{d}}{\mathrm{d}x}(x^2+1)$: the derivative of x squared plus one with respect to x.
- $\frac{\mathrm{d}^2 f}{\mathrm{d}t^2}$: the second derivative of f with respect to t.
- $\frac{\mathrm{d}^n f}{\mathrm{d} t^n}$: the *n*th derivative of f with respect to t.
- $\frac{\mathrm{d}f}{\mathrm{d}t}\Big|_{t=1}$: the derivative of f with respect to t evaluated at t equals 1.
- $\bullet \ \partial v :$
- \bullet $\frac{\partial f}{\partial t}$:
- \bullet $\frac{\partial^2 f}{\partial t^2}$:

- $\frac{\mathrm{d}f}{\mathrm{d}t}$: $\mathrm{d}f$ by $\mathrm{d}t$ or the derivative of f with respect to t.
- $\frac{\mathrm{d}}{\mathrm{d}x}(x^2+1)$: the derivative of x squared plus one with respect to x.
- $\frac{\mathrm{d}^2 f}{\mathrm{d}t^2}$: the second derivative of f with respect to t.
- $\frac{\mathrm{d}^n f}{\mathrm{d}t^n}$: the *n*th derivative of f with respect to t.
- $\frac{\mathrm{d}f}{\mathrm{d}t}\Big|_{t=1}$: the derivative of f with respect to t evaluated at t equals 1.
- ∂v : the partial derivative of v.
- \bullet $\frac{\partial f}{\partial t}$:
- $\frac{\partial^2 f}{\partial t^2}$:

- $\frac{\mathrm{d}f}{\mathrm{d}t}$: $\mathrm{d}f$ by $\mathrm{d}t$ or the derivative of f with respect to t.
- $\frac{\mathrm{d}}{\mathrm{d}x}(x^2+1)$: the derivative of x squared plus one with respect to x.
- $\frac{\mathrm{d}^2 f}{\mathrm{d}t^2}$: the second derivative of f with respect to t.
- $\frac{\mathrm{d}^n f}{\mathrm{d}t^n}$: the *n*th derivative of f with respect to t.
- $\frac{\mathrm{d}f}{\mathrm{d}t}\Big|_{t=1}$: the derivative of f with respect to t evaluated at t equals 1.
- ullet ∂v : the partial derivative of v.
- $\frac{\partial f}{\partial t}$: delta f by delta t or the partial derivative of f with respect to t.
- \bullet $\frac{\partial^2 f}{\partial t^2}$:

- $\frac{\mathrm{d}f}{\mathrm{d}t}$: $\mathrm{d}f$ by $\mathrm{d}t$ or the derivative of f with respect to t.
- $\frac{\mathrm{d}}{\mathrm{d}x}(x^2+1)$: the derivative of x squared plus one with respect to x.
- $\frac{\mathrm{d}^2 f}{\mathrm{d}t^2}$: the second derivative of f with respect to t.
- $\frac{\mathrm{d}^n f}{\mathrm{d} t^n}$: the *n*th derivative of f with respect to t.
- \bullet $\frac{\mathrm{d}f}{\mathrm{d}t}\Big|_{t=1}$: the derivative of f with respect to t evaluated at t equals
- ∂v : the partial derivative of v.
- $\frac{\partial f}{\partial t}$: delta f by delta t or the partial derivative of f with respect to t.
- $\frac{\partial^2 f}{\partial t^2}$: the second partial derivative of f with respect to t.