جامعـة مولـود معمـري تيزي وزو
 Universite Mouloud Mammeri de Tizi-Ouzou

FACULTY OF SCIENCES
DEPARTMENT OF MATHEMATICS

Teaching Mathematics In English

Prepared by: Ania ADIL, PhD

AGENDA

Introduction
Math Vocabulary
Math Lesson in English
Summary

INTRODUCTION

Why is it important to teach in English?

- English is an international language.
- English helps communicate with and understand the world around.

No. of native and non-native English speakers ${ }^{1}$

- English is the language of technical and scientific journals.
- Collaboration and employment opportunities.

GOAL
How to teach a math lesson in English?

TIMELINE

STEP 1 \qquad Learn the basic math vocabulary and how to read math in English

```
STEP 2 Learn the math vocabulary related to the course (Analysis, Algebra, Statistics and Probability, ...)
```

```
STEP 3
Prepare the lesson in English
```

\qquad

HOW TO PROCEED?

STEP 1: Learn the basic math vocabulary and how to read math in English

Numbers Vocabulary:

Set of numbers:

\mathbb{N} : The set of Natural numbers
\mathbb{Z} : The set of Integers
\mathbb{Z}^{+}: The set of positive Integers
\mathbb{Q} : The set of Rational numbers
\mathbb{Q}^{+}: The set of positive Rational numbers
\mathbb{R} : The set of real numbers

Examples:

$$
\begin{aligned}
& \{1,2,3,4, \ldots\} \\
& \{0, \pm 1, \pm 2, \pm 3, \ldots\} \\
& \{1,2,3,4, \ldots\} \\
& \frac{m}{n}: \mathrm{m}, \mathrm{n} \in \mathbb{Z}, \mathrm{n} \neq 0 \\
& \{x: x \in \mathbb{Q}, x>0\}
\end{aligned}
$$

\mathfrak{R} : Real part
\mathfrak{J} : Imaginary part

Cardinal Numbers:

0	zero, nought	11	eleven	21	twenty-one
1	one	12	twelve	22	twenty-two
2	two	13	thirteen	23	twenty-three
3	three	14	fourteen	24	twenty-four
4	four	15	fifteen	30	thirty
5	five	16	sixteen	31	thirty-one
6	six	17	seventeen	40	forty
7	seven	18	eighteen	50	fifty
				60	sixty
8	eight	19	nineteen		
				70	seventy
9	nine	20	twenty		
				80	eighty
10	ten			90	ninety

100	one hundred
101	one hundred and one
152	one hundred and fifty-two hundred
200	one thousand
1,000	one million
$1,000,000$	one trillion
$1,000,000,000$	
$1,000,000,000,000$	

! In English, when we write cardinal numbers, we separate thousands with a comma (,

For numbers in the hundreds:

British English: $120=$ one hundred and twenty American English: $120=$ one hundred twenty

For numbers in the thousands

British English: 3,486 = three thousand, four hundred and eighty-six American English: 3,486 = thirty-four hundred, eighty-six

Examples:

How to Say Numbers in the Hundreds:

Say numbers in the hundreds by beginning with numerals one through nine followed by "hundred". Finish by saying the last two digits:
>350 - three hundred fifty
>425 - four hundred twenty-five
>873 - eight hundred seventy-three
> 112 - one hundred twelve

How to Say Numbers in the Thousands:

Say a number up to 999 followed by "thousand." Finish by reading the hundreds when applicable:
$>15,560$ - fifteen thousand five hundred sixty
$>786,450$ - seven hundred eighty-six thousand four hundred fifty
$>$ 342,713 - three hundred forty-two thousand seven hundred thirteen
> 569,045 - five hundred sixty-nine thousand forty-five

How to Say Numbers in the Millions

For millions, say a number up to 999 followed by "million." Finish by saying first the thousands and then the hundreds when applicable:
$>2,450,000$ - two million four hundred fifty thousand
$>27,805,234$ - twenty-seven million eight hundred five thousand two hundred thirty-four
$>934,700,000$ - nine hundred thirty-four million seven hundred thousand
$>589,432,420$ - five hundred eighty-nine million four hundred thirty-two thousand four hundred twenty

Ordinal numbers:

We use ordinal numbers to talk about the "order" of things or to define a thing's position in a series.

first	1 st
second	2 nd
third	3 rd
fourth	4 th
fifth	5 th
sixth	6 th
seventh	7 th
eighth	8 th
ninth	9 th
tenth	10 th

eleventh	11 th
twelfth	12 th
thirteenth	13 th
fourteenth	14 th
fifteenth	15 th
sixteenth	16 th
seventeenth	17 th
eighteenth	18 th
nineteenth	19 th
twentieth	20 th

twenty-first	21st
twenty-second	22nd
twenty-third	23rd
twenty-fourth	24 th
thirtieth	30 th
thirty-first	31 st
fortieth	40 th
fiftieth	50 th
sixtieth	60 th
seventieth	70 th

eightieth	80 th
ninetieth	90 th
hundredth	100 th
hundred and first	101 st
hundred and fifty-second	152 nd
two hundredth	200 th
thousandth	1,000 th
millionth	$1,000,000$ th
billionth	$1,000,000,000$ th
trillionth	

Fractions:

In the fraction $\frac{a}{b}$ (a over b):
$>a$ is called the numerator
$\Rightarrow \mathrm{b}$ is called the denominator.
A proper fraction has its numerator less than its denominator, e.g. $\frac{3}{4}$ An improper fraction has its numerator more than its denominator, e.g. $\frac{9}{2}$

How to Talk About Fractions:

Say the top number as a cardinal number, followed by the ordinal number + "s:"

- 3/8 - three-eighths
- 5/16-five-sixteenths
- 2/32 - two thirty-seconds

Exceptions to this rule are:

- 1/4, 3/4 - one-quarter, three quarters
- 1/3, 2/3 - one third, two-thirds

$1 / 2$	a half OR one half
$1 / 3$	a third OR one third
$1 / 4$	a quarter OR one quarter
$1 / 5$	a fifth OR one fifth
$3 / 4$	three quarters
$1 / 8$	an eighth OR one eighth
$2 / 3$	two thirds
$3 / 5$	three fifths
$5 / 8$	five eighths
$1 / 2$	one and a half
$53 / 4$	five and three quarters

Read numbers together with fractions by first stating the number followed by "and" and then the fraction:

- $47 / 8$ - four and seven-eighths

Decimals

How to Say Numbers With Decimals:
Speak decimals as the number followed by "point." Next, say each number beyond the point individually:

- 2.36 - two point three six
- 0.25 - nought point two five / point two five
- 0.6405 - nought point six four oh five or zero point six four zero five
- 14.82 - fourteen point eight two
- 9.7841 -nine point seven eight four one
- 3.14159 - three point one four one five nine
! To indicate a decimal number we use a point (.)

0.1	nought point one
0.25	nought point two five / point two five
0.01	nought point oh one
0.75	nought point seven five / point seven five
0.0001	nought point oh oh oh one
1.1	one point one
1.2	one point two
1.23	one point two three
1.0123	one point oh one two three
3.33	three point three three
8.195	eight point one nine five
9.1567	nine point one five six seven
10.01	ten point oh one
21.57	two point six recurring
$2.6666666666 \ldots$	

Mathematical Symbols:

\checkmark Arithmetic operators:

+ : plus
addition : addition
additionner : to add
la somme : the sum

Examples:

- $10+2=12$ Ten plus two equals twelve or Ten plus two is twelve.
- $23+5+6=34$

Twenty-three plus five plus six equals thirty-four.
Or Twenty-three plus five plus six is thirty-four.

- $405+67+12=484$

Four hundred and five plus sixty-seven plus twelve equals four hundred and eighty-four. Or Four hundred and five plus sixty-seven plus twelve is four hundred and eighty-four
! Note that we usually say equals NOT equal.

- : minus
soustraction : subtraction
soustraire : to subtract / to take
away (enlever)
la différence : the difference

Examples:

-16-13 = 3 : Thirteen from sixteen leaves three
Or Sixteen minus thirteen equals three.
Or Sixteen minus thirteen is three.
-47-11 = 36
Eleven from forty-seven leaves thirty-six.
Or Forty-seven minus eleven equals thirty-six.
Or Forty-seven minus eleven is thirty-six.
x : multiplied by, times
multiplication : multiplication
multiplier : to multiply
fois (multiplié par) : times
le produit : the product

Examples:

- $8 \times 5=40$

Eight times five equals forty or Eight fives is forty.

- $35 \times 11=385$

Thirty-five times eleven equals three hundred and eighty-five.
or
Thirty-five elevens is three hundred and eighty-five.
\div or / : divided by
division : division
diviser : to divide
divisé par : divided by
le quotient : the quotient

Examples:

- $62: 2$ = 31

Sixty-two divided by two equals thirty-one or Two into sixty-two is thirty-one
or If you divide sixty-two by two you get thirty-one

- $140: 5=28$

One hundred and forty divided by five equals twenty-eight.
or
Five into one hundred and forty is twenty-eight.

Examples

- $6 \times 30+5=185$

Six times thirty plus five equals one hundred and eighty-five or
Six times thirty plus five is one hundred eighty-five.

- $23-7+14 \times 11=170$

Twenty three minus seven plus fourteen times eleven equals one hundred and seventy or Twenty three minus seven plus fourteen times eleven is one hundred and seventy.
\neq : is not equal to
\approx : almost equal to
三 : identical to
~ : approximately
\pm : plus or minus
$\mp:$ minus or plus

Examples:

$x \neq z: x$ is not equal to z
$x \approx y: x$ is approximately equal to y
$\mathrm{x} \pm 1: \times$ plus or minus 1
$x \equiv y: x$ is equivalent to $y ; x$ is identical with y

