RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE et POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Mouloud Mammeri de Tizi Ouzou

Tasdawit Lmulud At Maemmar

$$\begin{split} +_{\circ} \odot \bigvee_{\circ \circ}^{\circ} \Sigma + \quad \Box_{\circ}^{\circ} \parallel_{\circ}^{\circ} \lor \quad \circ + \quad \Box_{\circ} \Box_{\circ} \mathsf{O} \\ \\ \text{Faculté de Génie de la Construction} \\ \text{Département de Génie Mécanique} \end{split}$$

_Polycopié de cours :____

Machines Frigorifiques et Pompes à Chaleur.

Dr. Salah ZOUAOUI

-Juin 2020-

Sommaire

Table des figures

Liste des tableaux

Chapitre 1

Généralités

1.1 Bref Historique du froid

La production de froid ne date pas d'hier puisque déjà en **1600** des scientifiques se sont aperçus qu'un mélange de neige et de sel abaissait suffisamment la température de l'eau pour former de la glace. La première machine de réfrigération à compression a vu le jour à Londres en **1834**, et son inventeur est **Jacobs Perkins**, qui s'est servi de l'éther comme réfrigérant.

FIGURE 1.1 – Gaz réfrigérants.

 Ferdinand Carre est considéré comme pionnier des machines frigorifique, en 1857 il réalise la première machine frigorifique à compression, puis 1860 la première machine à absorption à fonctionnement continu. Il est également le premier à utiliser l'ammoniaque comme fluide frigorifique.

- en 1876 Charles Tellier en guise d'application aménage le premier navire à cales réfrigérées, qui réussit à transporter sur le trajet Rouen Buenos Aires des viandes conservées en parfait état.
- c'est en 1931 que l'industrie du froid connaît un bond majeur avec l'arrivée des gaz réfrigérants R12, R22 (en 1935) et R502 (en 1961), puis la réglementation évoluant, de nouveaux gaz sont apparus au fil des années (exemple du R134 vers 1993) (figure ??).

1.1.1 Production de froid

La production de froid correspond en fait à un déplacement de chaleur d'un milieu plus au moins isolé vers un milieu extérieur. Pour rappel naturellement la chaleur évolue du milieu le plus chaud vers le milieu le plusfroid.

On distingue dans le domaine du froid deux domaines distincts :

- la réfrigération qui consiste à produire et maintenir une température inférieure à la température ambiante;
- la cryophysique qui est la science des propriétés de la matière à très basse température (quelques K).

La distinction entre réfrigération et cryophysique diffère selon l'usage. Dans l'industrie la réfrigération s'arrête souvent à la liquéfaction de l'air (environ).

Il y a deux procédés de production du froid :

- le procédé purement **physique** : changement d'état avec compression puis détente ;
- le procédé physico-chimique : échange de chaleur mis en jeu par l'absorption ou la désorption d'un gaz dans un liquide.

Toute transformation endothermique peut constituer un procédé capable de produire du froid soit :

- fusion d'un solide,
- sublimation d'un solide,
- vaporisation d'un liquide,

- détente d'un gaz,
- effet Peltier, Thomson
- dissolution des solides, liquides et gaz.

Les machines les plus courantes fonctionnent en vaporisant le fluide frigorigène dans la chambre froide. C'est précisément au cours de cette opération que la chaleur est absorbée.

Si l'on désire une production continue de froid, il est nécessaire de réaliser un cycle, c'est à dire combiner un phénomène exothermique a un phénomène endothermique. Les machines frigorifiques seront donc au moins bithermes.

1.2 Cycle frigorifique de Carnot

1.2.1 Définition du cycle de Carnot

Sadi Carnot a posé en 1824 dans son ouvrage "Réflexions sur la puissance motrice du feu et les machines propres à développer cette puissance" les bases d'un cycle idéal entre deux sources de chaleur, connu depuis sous le nom de "cycle de Carnot". Il est défini comme un cycle de production d'énergie composé de quatre évolutions réversibles pour décrire un moteur thermique optimal (cycle idéal). Il est décrit comme suit (voir figure ??) :

Le cycle de **Carnot** constitue le cycle par excellence. Il est composé de deux isothermes et de deux isentropes (figure ??). Le cycle Carnot inversé est le cycle de réfrigération optimale ou **Le cycle frigorifique de Carnot**.

1.2.2 Caractéristiques du cycle frigorifique

Source Froide :

- $-Q_f$: chaleur absorbée par le fluide au cours d'un cycle (J).
- $-q_{fm}$: chaleur absorbée par unité de masse de fluide J/kg.
- q_{fv} : chaleur absorbée par unité de masse de volume de fluide J/m^3 .

Source chaude :

 $-Q_c$: chaleur cédée par le fluide au cours d'un cycle.

FIGURE 1.2 – Description du cycle de Carnot.

— q_{cm} : chaleur cédée par unité de masse de fluide J/kg.

— q_{cv} : chaleur cédée par unité de masse de volume de fluide J/m^3 .

Soit M la masse de fluide qui traverse le système au cours d'un cycle, V_a le volume massique du fluide à l'aspiration et τ la durée d'un cycle. Les caractéristiques d'une machine frigorifique sont définies comme suit (voir tableau ?? ci-dessous) :

FIGURE 1.3 – Cycle frigorifique de Carnot.

1.3 Coefficient de performance du cycle de Carnot

1.3.1 Principe de réfrigération

Au cours de l'évolution du fluide frigorigène dans une machine frigorifique, fonctionnant selon le cycle inversé de Carnot, échange de la chaleur (de façon isotherme) avec deux sources et reçoit du travail mécanique. La figure **??** illustre le schéma de fonctionnement d'une telle machine.

FIGURE 1.4 – Schéma de principe de réfrigération.

 Q_c désigne la chaleur allant du système vers la source chaude (milieu ambiant), Q_f la chaleur allant de la source froide (local à refroidir) vers le système. Le fonctionnement

Échange avec	Échange avec	Travail	
la source froide	la source chaude		
Effet frigorifique	Effet calorifique	Travail	
cyclique : Q_{f}	cyclique : $Q_{\hat{c}}$	mécanique : W	
[J] : joules	[J] : joules	[J] : Joules	
[fg] : frigories (kilocalories)	[fg] : frigories (kilocalories)		
Production frigorifique	Production calorifique	Travail	
massique : q_{fm}	massique : q_{cm}	massique w_m	
$q_{fm} = \frac{Q_f}{M}$	$q_{cm} = \frac{Q_c}{M}$	$w_m = \frac{W}{M}$	
IVI	IVI	IVI	
$[\mathrm{Jkg^{-1}}]$	$[\mathrm{Jkg^{-1}}]$	$[{ m Jkg^{-1}}]$	
Production frigorifique	Production calorifique	Travail	
volumique : q_{0v}	volumique : q_{cv}	volumique w_v	
$q_{fr} = \frac{Q_f}{V_a}$	$q_{cv} = \frac{Q_c}{V_a}$	$w_v = \frac{W}{V_a}$	
$[\mathrm{Jm^{-3}}]$	$[\mathrm{J~m^{-3}}]$	$[\mathrm{Jm^{-3}}]$	
Puissance frigorifique	Puissance calorifique	Puissance mécanique	
$\Phi_f = \left \frac{Q_f}{\tau}\right $	$\Phi_c = \left \frac{Q_c}{\tau} \right $	$P = \frac{W}{\tau}$	
$[W] [fg h^{-1}]$	$[W] [fg h^{-1}]$	[W]	
Production frigorifique	Production calorifique		
spécifique	spécifique		
$K_{fsp} = \left \frac{Q_f}{W}\right $	$\left K_{csp} = \frac{Q_k}{W} \right $		
$\begin{bmatrix} J & kWh^{-1} \end{bmatrix}$ $\begin{bmatrix} fg & kWh^{-1} \end{bmatrix}$	$\begin{bmatrix} J & kWh^{-1} \end{bmatrix}$ $[fg & kWh^{-1}]$		

TABLE 1.1 – Caractéristiques d'une machine frigorifique.

de cette machine nécessite une énergie mécanique W. Ces machines utilisent un fluide isolé matériellement de l'ambiance qui évolue selon un cycle. Le premier principe de la thermodynamique appliqué à un système décrivant un cycle s'écrit :

$$\Delta U = W + Q_c + Q_f = O \tag{1.1}$$

Du faite que les échanges de chaleur ont lieu de façon isotherme, les variations d'entropie du fluide lors de ces évolutions s'exprime par :

$$\Delta S_c = \frac{Q_c}{T_c} \qquad et \qquad \Delta S_f = \frac{Q_f}{T_f}$$

S'agissant d'évolutions réversibles, alors $\Delta S_{Cycle} = 0$, ce qui permet d'écrire l'égalité de Clausius :

$$\frac{Q_c}{T_c} + \frac{Q_f}{T_f} = 0 \tag{1.2}$$

1.3.2 Détermination du coefficient de performance

Pour évaluer les performances d'un cycle frigorifique, nous utilisons le coefficient de performance (COP). Par définition, il est le rapport entre l'énergie thermique utile et la dépense énergétique (équation ??)

$$COP = \frac{\acute{e}nergie \ themique \ utile}{d\acute{e}pense \ \acute{e}nerg\acute{e}tique} \tag{1.3}$$

Dans le cas d'une machine frigorifique, le fluide reçoit de la chaleur de la source froide $(Q_f > 0)$, fournit de la chaleur à la source chaude $(Q_c < 0)$ et reçoit du travail de la part de l'extérieur (W > 0).

On définit le **coefficient de performance** pour une machine frigorifique (COP_{MF}) par :

$$COP_{MF} = \frac{Q_f}{W} \tag{1.4}$$

de l'équation (??) on peut écrire :

$$COP_{MF} = \frac{Q_f}{W} = -\frac{Q_f}{Q_c + Q_f} \tag{1.5}$$

Lequel devient :

$$COP_{MF} = -\frac{1}{\frac{Q_c}{Q_f} + 1} \tag{1.6}$$

Tenant compte de l'expression (??), on déduit que :

$$\frac{Q_c}{Q_f} = -\frac{Tc}{T_f} \tag{1.7}$$

Cette dernière relation portée dans l'expression $(\ref{eq:local})$ conduit à :

$$COP_{MF} = \frac{T_f}{T_c - T_f} \tag{1.8}$$

L'équation **??** représente l'expression de l'efficacité maximum pouvant être atteinte par un cycle ditherme (efficacité de Carnot).

Chapitre 2

Cycle thermodynamique d'une machine frigorifique à compression de vapeur

Les machines frigorifiques à compression mécanique simple sont les plus répandues. Le cycle à compression de vapeur est constitué d'au moins quatre composants :

- un système de compression
- deux échangeurs de chaleur
- un système de détente

Un système frigorifique mettant en œuvre un cycle à compression de vapeur est présenté dans la figure ??

Ce système est composé de :

- ✤ un évaporateur qui assure la vaporisation du frigorigène. La vapeur sortante de l'échangeur peut être saturante ou le plus souvent légèrement surchauffée. L'évaporation est effectuée à pression constante (si l'on néglige les pertes de pression dans l'échangeur), et donc à température constante pour les fluides purs.
- ✤ un compresseur qui aspire la vapeur surchauffée sortant de l'évaporateur et la comprime jusqu'à la pression qui règne dans le condenseur.
- ✤ un condenseurqui assure la condensation du fluide frigorigène. Le liquide sortant de l'échangeur est à l'état saturé ou légèrement sous refroidi.

CHAPITRE 2. CYCLE THERMODYNAMIQUE D'UNE MACHINE FRIGORIFIQUE À COMPRESSION DE VAPEUR

FIGURE 2.1 – Système frigorifique à compression mécanique de vapeur.

✤ un détendeur qui alimente l'évaporateur avec un fluide à basse pression. Le fluide y subit en son sein une détente de la pression de condensation à la pression d'évaporation

<u>**Remarque**</u>: Ce système ne peut fonctionner de manière réversible. Même si la compression est insentropique, l'échange de chaleur des vapeurs surchauffées avec la source chaude s'effectue sous un écart de température non négligeable. De plus, dans la majorité des cas, le détendeur est une simple vanne de laminage et la détente s'effectue donc sans récupération d'énergie mécanique.

2.1 Cycle thermodynamique idéal de réfrigération à compression mécanique de vapeur

Devant les difficultés à réaliser un cycle de Carnot, le cycle idéal à compression de vapeur peut être décomposé en cinq étapes illustrées dans un diagramme entropique (T = f(s)) et un diagramme enthalpique (P = f(h)) (figure ??).

Ce cycle fondamental s'accompagne des hypothèses suivantes d'une machine supposée

idéale :

- Le compresseur est parfait (pas d'espace mort, parois imperméables, pas de frottements ni de résistance passive).
- Les échanges de chaleur dans l'évaporateur et dans le condenseur se font d'une manière réversible.
- Les parois des tuyauteries sont imperméables à la chaleur et l'écoulement du fluide s'y effectue sans frottement ni résistance passive (sauf au détendeur évidemment).

FIGURE 2.2 – Cycle thermodynamique idéal de réfrigération à compression de vapeur dans un diagramme (T,s) et (P,h) .

Les étapes de transformations se résument comme suit :

- 1 → 2 : compression adiabatique réversible (isentropique) : au point 1, le liquide est entièrement vaporisé (vapeur saturée sèche).
- $2 \rightarrow 2'$: désurchauffe isobare des vapeurs.
- 2' → 3 : condensation isotherme et isobare : il y a liquéfaction. La différence d'enthalpie entre 2' et 3 représente la quantité de chaleur cédée par le condenseur au milieu extérieur.
- 3 → 4 : détente isenthalpique du liquide frigorigène au travers d'une vanne de laminage.
- $4 \rightarrow 1$: évaporation isotherme et isobare qui ramène le fluide à son état initial

avant d'être aspiré par le compresseur pour un nouveau cycle.

Ce de cycle, extrêmement répandue, est utilisée pour la plupart des machines frigorifiques (il sert de cycle base à la plupart des applications industrielles).

Cependant un tel cycle n'est pas réalisable techniquement pour plusieurs raisons : d'abord les compression et détente « humides » entraînent des usures, voire des accidents brutaux pour les matériels («coups de liquide »), ensuite la régulation pour obtenir le bon titre en vapeur serait trop délicate.

2.1.1 Quelques grandeurs caractéristiques du cycle idéal

En se rapportant au diagramme enthalpique (LogP, h) de la figure (??); il est possible d'établir les valeurs théoriques des paramètres caractérisant le cycle idéal.

Ce diagramme (appelé aussi « diagramme de Mollier ») est rapporté à une masse de fluide frigorigène m = 1kg.

Le choix d'échelle en abscisse (enthalpie h en kJ/kg) est très pratique pour l'exploitation quantitative du cycle, car il permet de lire directement les énergies h_i aux différents points (1, 2, 3, 4) du cycle de la machine.

Exemple d'application : Cycle de réfrigération à compression de vapeur idéal

Soit un réfrigérateur qui fonctionne suivant le cycle idéal de réfrigération à compression de vapeur de base. Le fluide frigorigène est le R - 134a. Les limites de pression du ce système sont respectivement 0, 14 et 0, 8 MPa, et le débit massique du réfrigérant est de 0, 05 kg/s.

- 1 Représenter le cycle sur un diagramme T s.
- 2Déterminer :
 - a) La puissance thermique extraite du milieu réfrigéré.
 - b) La puissance consommée par le compresseur.
 - c) La puissance thermique évacuée dans le milieu extérieur.
 - d) Le **COP** du réfrigérateur.

Solution

Il s'agit d'un réfrigérateur qui fonctionne suivant le cycle idéal de réfrigération à compression de vapeur.

Hypothèses :

- 1. Le régime d'écoulement est permanent.
- 2. Les variations des énergies cinétique et potentielle sont négligeables.

Analyse :

1 Le diagramme T-s du cycle de réfrigération est illustré à la figure ??. L'évolution au sein du compresseur est isentropique. Le fluide frigorigène entre dans le compresseur sous forme de vapeur saturée et sort du condenseur sous forme de liquide saturé.

FIGURE 2.3 – Diagramme T - s du cycle de réfrigération à compression de vapeur idéal.

A l'aide des tables de réfrigérant R - 134a (annexe ??), on détermine l'état de la vapeur aux quatre points du cycle comme suit :

$$P_1 = 0, 14 MPa \longrightarrow \begin{cases} h_1 = h_{g,0,14MPa} = 239, 16kJ/kg \\ S_1 = S_{g,0,14MPa} = 0, 94456kJ/kg.K \end{cases}$$

$$\left.\begin{array}{c}P_2 = 0,8MPa\\S_2 = S_1\end{array}\right\} \longrightarrow h_2 = 275,39$$

$$P_3 = 0, 8MPa \longrightarrow h_3 = h_{f,0,8MPa} = 95, 47kJ/kg$$

$$h_4 \cong h_3 \longrightarrow h_4 = 95, 47kJ/kg$$

2-a) La puissance thermique extraite du milieu réfrigéré est :

$$\dot{Q}_f = \dot{m}(q_f) = (0,05).(239,16-95,47) = 7,18 \, kW$$

2-b) La puissance consommée par le compresseur est :

$$\dot{W}_{in} = \dot{m}(h_2 - h_1) = (0, 05).(275, 39 - 239, 16) = 1,81 \, kW$$

2-c) La puissance thermique évacuée vers le milieu extérieur est :

$$\dot{Q}_c = \dot{m}(h_2 - h_3) = (0, 05).(275, 39 - 95, 47) = 9 \, kW$$

Cette puissance peut être aussi calculée, en appliquant le premier principe de la thermodynamique pour une évolution cyclique, comme suit :

$$\dot{Q}_c = \dot{Q}_f + \dot{W}_{in} = 7,18 + 1,81 = 8,99 \approx 9 \, kW$$

2-d) Le coefficient de performance du réfrigérateur est :

$$\operatorname{COP}_R = \frac{\dot{Q}_f}{\dot{W}_{in}} = \frac{7,18}{1,81} = 3,97$$

Ce résultat signifie que pour chaque kilojoule d'électricité consommé par le réfrigérateur, presque 4 kJ de chaleur sont extraits du milieu réfrigéré.

<u>**Discussion**</u> : Dans le cas où le détendeur est remplacé par une turbine isentropique on aura :

A la sortie de la turbine (état 4_s), $P_{4s} = 0, 14 MPa$ et $s_{4s} = s_3 = 0, 35404 kJ/kg.K$. L'enthalpie correspondante est donc $h_{4s} = 88, 94 kJ/kg$, et la turbine produit alors une puissance égale à $\dot{m}(h_{4s} - h_3) = 0, 33 kW$. La puissance externe requise pour faire fonctionner le compresseur est donc réduite de 1, 81 à 1, 48 kW (1, 81 - 0, 33 = 1, 48 kW), et la chaleur extraite du milieu réfrigéré passe de 7, 18 à 7, 51 kW ($(h_1 - h_{4s})\dot{m}$). Par conséquent le COP_R est augmenté de 3, 97 à 5, 07, soit une augmentation de 28%.

2.2 Cycle thermodynamique réel de réfrigération à compression mécanique de vapeur

Le cycle réel décrit par le fluide dans la machine s'écarte un peu, pour des raisons pratiques, du cycle de idéal. Il a l'allure représentée sur la figure suivante (??) :

FIGURE 2.4 – Cycle thermodynamique réel de réfrigération à compression de vapeur dans un diagramme (T,s) et (P,h) .

La température du fluide à la sortie de l'évaporateur est généralement différente de celle de l'évaporateur T_{vap} et le point représentatif n'est pas situé sur la courbe de saturation (courbe de rosée) mais dans la zone "vapeur" du diagramme. Il y a surchauffe du gaz à la sortie de l'évaporateur(1-1') car il est important que le fluide soit entièrement sous forme vapeur en sortie d'évaporateur pour ne pas abîmer le compresseur. La transformation 1'-2'correspond à une compression réelle qui est différente d'une compression isentropique 1'-2 et cela est du aux pertes de chaleur et aux irréversibilités dans le compresseur.

Le fluide frigorigène subit une désurchauffe isobarique 2' - 2" puis une condensation dans le condenseur (2" - 3). Le fluide liquide se refroidit ensuite de quelques degrés (sousrefroidissement) (" - 3) avant de quitter le condenseur.

A travers le détendeur, le fluide subit une détente isenthalpique. Le fluide frigorigène se vaporise partiellement, ce qui abaisse sa température (3' - 4').

La figure ?? représentes ces différente étapes sur le diagramme de Mollier (P - H).

FIGURE 2.5 – Cycle thermodynamique réel de réfrigération à compression de vapeur dans le diagramme Mollier (P, H).

FIGURE 2.6 – Cycle thermodynamique actuel de réfrigération à compression de vapeur dans le diagramme (T,s) .

Remarque

Il est à noter que si on néglige pas les pertes de charges, les évolutions dans l'évaporateur et le condenseur ne sont pas isobares (figure **??**).

Exemple d'application : Cycle réel de réfrigération à compression de vapeur

Le réfrigérant R – 134a pénètre dans un compresseur d'un réfrigérateur sous forme de vapeur surchauffée à 0, 14 MPa et à $-10^{\circ}C$ avec un débit de 0, 05 kg/s. Il sort à 0, 8 MPa et à 50°C. Le réfrigérant est refroidi à 26°C et à 0, 72 MPa dans le condenseur, puis il est détendu à 0, 15 MPa

- 1 Représenter le cycle sur un diagramme T s.
- 2~ Déterminer :
 - a) La puissance thermique extraite du milieu réfrigéré.
 - b) La puissance consommée par le compresseur.
 - c) Le rendement isentropique du compresseur.
 - d) Le **COP** du réfrigérateur.
 - e) Le rendement frigorifique η_f .

Solution

Il s'agit d'un réfrigérateur qui fonctionne suivant le cycle réel de réfrigération à compression de vapeur.

Hypothèses :

- 1. Le régime d'écoulement est permanent.
- 2. Les variations des énergies cinétique et potentielle sont négligeables.
- 3. Le frottement et le transfert de chaleur dans les conduits sont négligés.

Analyse :

1 Le diagramme T - s du cycle de réfrigération est illustré à la figure ??.
A l'aide de des tables de réfrigérant R - 134a (voir tables annexes ??), on détermine l'état de la vapeur aux différents points du cycle comme suit :

FIGURE 2.7 – Diagramme T - s du cycle de réfrigération à compression devapeur réel.

$$P_{1} = 0, 14MPa$$

$$T_{1} = -10^{\circ}C$$

$$P_{2} = 0, 8MPa$$

$$T_{1} = 50^{\circ}C$$

$$P_{3} = 0, 72MPa$$

$$T_{1} = 26^{\circ}C$$

$$h_{3} \cong h_{4} \longrightarrow h_{4} = 87, 83 kJ/kg$$

2-a) La puissance thermique extraite du milieu réfrigéré est :

$$\dot{Q}_f = \dot{m}(h_1 - h_4) = (0, 05).(246, 36 - 87, 83) = 7,93 \, kW$$

2-b) La puissance consommée par le compresseur est :

$$\dot{W}_{in} = \dot{m}(h_2 - h_1) = (0, 05).(286, 69 - 246, 36) = 2,02 \, kW$$

2-c) Le rendement isentropique du compresseur

$$\eta_{is,c} = \frac{h_{2s} - h_1}{h_2 - h_1}$$

avec l'enthalpie à l'état 2
s $(P_{2s}=0,8MPa\ et\ s_{2s}=s_1=0,9724\ kJ/kg.K)$ est $h_{2s}=284,21kJ/kg.$ Alors :

$$\eta_{is,c} = \frac{284, 21 - 246, 36}{286, 69 - 246, 36} = 0,939 = 93,9\%$$

2-d) Le coefficient de performance du réfrigérateur est :

$$\operatorname{COP}_R = \frac{\dot{Q}_f}{\dot{W}_{in}} = \frac{7,18}{1,81} = 3,93$$

2-e) Le rendement frigorifique η_f est :

$$\eta_f = \frac{\text{COP}_R}{\text{COP}_{Carnot}} = \frac{3,93}{3,97} \approx 0,98$$

Discussion : Cet exemple est semblable à l'exemple précédent (Cycle idéal de réfrigération à compression de vapeur). La différence réside dans le fait que le réfrigérant est légèrement surchauffé à l'entrée du compresseur et légèrement sous-refroidi à la sortie du condenseur. De plus, le compresseur n'est pas isentropique. Par conséquent, la puissance extraite du milieu réfrigéré a augmenté de 10,4% et la puissance consommée par le compresseur a aussi augmenté de 11,6%. Ce qui réduit les performances de la machine frigorifique qui se traduit par COP_R de 3,93 à 3,97.

2.3 Bilan thermique du cycle thermodynamique

Le système thermodynamique considéré est le fluide frigorigène décrivant un cycle. Le premier principe de la thermodynamique s'écrit (voir l'équation ??) :

$$w + q_c + q_f = 0 \tag{2.1}$$

Le bilan des échanges de chaleur et de travail au niveau de chacun des composants de la machine frigorifique (voir figure ??) est comme suit : \bigstar Chaleur massique extraite à l'évaporateur :

$$q_f = h_1 - h_4 > 0$$

 \bigstar Travail massique du compression :

$$w = h_2 - h_1 > 0$$

 \bigstar Chaleur massique dégagée au condenseur :

$$q_c = h_3 - h_2 < 0$$

 \bigstar Détente is enthalpique dans le détendeur :

$$h_4 = h_3 \Rightarrow \Delta h = 0$$

2.4 Coefficient de performance théorique

Par définition, le coefficient de performance d'une machine frigorifique théorique décrivant le cycle idéal est :

$$COP_{th} = \frac{q_f}{w} = \frac{(h_1 - h_4)}{(h_2 - h_1)}$$
(2.2)

2.4.1 Le rendement exergétique d'une machine frigorifique

Pour apprécier l'efficacité d'une machine thermique par rapport à la machine idéale de Carnot, on introduit « *le rendement exergétique* » η_{ex} défini par :

$$\eta_{ex} = \frac{\text{COP}_{th}}{\text{COP}_{Carnot}} = \frac{(h_1 - h_4)}{(h_2 - h_1).((T_c/T_f) - 1)} < 1$$
(2.3)

2.5 Notion de Fluides frigorigènes

On a vu que le système de réfrigération par cycle de compression de vapeur est constitué par l'évaporateur, le détendeur, le compresseur et le condenseur. Ces organes ont pour rôle de faciliter les changements d'état du fluide frigorigène et de le mettre en mouvement. On appelle fluides frigorigènes, les composés facilement liquéfiables et dont on utilise la vaporisation comme source de production de froid. L'eau peut être utilisée comme fluide frigorigène mais ses propriétés physiques ne sont pas toujours satisfaisantes en particulier son point de fusion (273.16K sous 1atm).

2.5.1 Critères de choix d'un fluide frigorigène

Le choix d'un fluide frigorigène se fait selon des critères bien précis. On peut citer :

a) Critères thermodynamiques

- La fonction température-pression : on cherche en général à utiliser des fluides dont la pression reste toujours supérieure à la pression atmosphérique afin d'éviter toute possibilité d'entrée de l'air (et donc également de la vapeur d'eau) dans le circuit.
- la production frigorifique volumétrique : le rapport entre la production frigorifique et le débit volumétrique devrait être le plus élevé possible. Ceci permet de réduire la taille des différents éléments de l'installation et notamment le compresseur.
- La température de refoulement à la sortie du compresseur est également un critère important. On évite d'avoir des températures supérieures à $150^{\circ}C$ pour éviter de dégrader le comportement lubrifiant de l'huile.
- La pression (température) critique : au-delà de cette pression, le fluide n'existe plus à l'état liquide. Il est donc souhaitable de travailler sous cette pression, même s'il est possible de réaliser des cycles transcritiques. De manière générale, on cherche à avoir la pression de condensation qui se situe entre 50 et 85% de la pression critique et la pression d'évaporation entre 5 et 15%.

 Chaleur latente de vaporisation importante, afin de diminuer le débit massique de fluide frigorigène.

b) Critères de sécurité

- Non inflammable et non explosif en mélange avec l'air.
- Non toxique .
- Sans action sur les denrées à conserver.
- Sans odeur ou n'ayant qu'une faible odeur non désagréable.
- Fuites faciles à détecter et à localiser par méthode visuelle.
- Pas d'affinité pour les constituants de l'atmosphère.
- Pas d'action du fluide sur les matériaux et sur l'huile de lubrification.
- Non explosif aux températures d'utilisation

c) Critères économiques

- Coût peu élevé.
- Approvisionnement facile.

d) Critères écologiques

- Pas d'action sur la couche d'ozone.
- Pas d'effet de serre.
- Possibilité de récupération et de recyclage.

Il est noté qu'aucun des fluides employés actuellement ne possède l'ensemble de ces qualités.

2.5.2 Rappels historiques

L'eau fut le premier fluide frigorigène utilisé depuis l'antiquité. En 1876, **Linde** a introduit l'ammoniac. Au début du **XX**ème siècle les hydrocarbures, le dioxyde de carbone (dans la marine) ainsi que le dioxyde de soufre sont utilisés. Malheureusement, tous ces composés sont soit toxiques, soit inflammables. C'est pour cette raison, les dérivées chlorofluorés du méthane et de l'éthane sont utilisées dés 1930.

2.5.3 Dénomination des fluides Rxyz

Les réfrigérants ont une nomenclature générale **Rxyz**. Ce qui permet dans la plupart des cas de déduire la nature et même la formule chimique du fluide.

- <u>x</u> :
 - pour $0 < \mathbf{x} < 3$ le nombre d'atomes de carbone-1
 - pour $\mathbf{x} = 4$ mélanges zéotropiques
 - pour $\mathbf{x} = 5$ mélanges azéotropiques
 - pour $\mathbf{x} = 6$ composés organiques
 - pour $\mathbf{x} = 7$ composés inorganiques
- $-\mathbf{y}:$
 - pour $0 < \mathbf{x} < 3$ nombre d'atomes d'hydrogène +1 ($\mathbf{y} = (nH + 1)$).
 - pour $\mathbf{x} = 4 o \hat{\mathbf{u}} 5 \mathbf{y} \mathbf{z}$ code composition du mélange avec lettre capitale
 - pour $\mathbf{x} = 6$ $\mathbf{y} = 0$ pour hydrocarbones, 1 pour composés avec oxygène, 2 pour composés sulfuriques, 3 pour composés avec azote
 - pour $\mathbf{x}=7$ \mathbf{yz} est la masse moléculaire
- \mathbf{z} :
 - pour $0 < \mathbf{x} < 3$ nombre d'atomes de fluore ($\mathbf{z} = (nF)$).
 - Le nombre d'atomes de chlore peut être obtenu en soustrayant le nombre d'atomes pouvant être connectés à l'atome de carbone. Par exemples : 4 pour les dérivées du méthane (CH_4) , 6 pour les dérivées de l'éthane (C_2H_6) ...etc. On peut aussi utiliser la formule : (nCl) = (2 * nC + 2) - (nH + nF).

2.5.4 Les différents fluides frigorigènes

On appelle fluides frigorigènes des composés facilement liquéfiables et dont on utilise la vaporisation comme source de production de froid. Ces fluides sont classés par groupe (voir tableau ??) :

- + G1 : fluides non inflammables, d'effet toxique nul ou minime.
- G2 : fluides toxiques dont certains sont inflammables et explosifs dans des domaines limités de concentration.
- G3: fluide inflammable et explosif en faibles concentrations mais non toxique.

Les fluides de type éthane sont utilisés dans l'industrie pétrochimique pour l'obtention de très basses températures (inférieures à $-100^{\circ}C$). Les fluides halogènes contenant du

CHAPITRE 2. CYCLE THERMODYNAMIQUE D'UNE MACHINE FRIGORIFIQUE À COMPRESSION DE VAPEUR

chlore, du fluor, du brome, sont, ou ont été pour certains, les plus utilisés. On les appelle **Fréon** ou **Forane**, qui sont des marques déposées par leur fabriquant respectif. Les fréons sont inodores, non toxiques, ininflammables et non explosifs avec l'air. Ils n'attaquent pas les métaux (sauf les alliages de magnésium) mais en présence d'eau ou d'humidité, il peut y avoir formation d'acide chlorhydrique très corrosif, d'où l'utilité de mettre un déshydratereur dans le circuit frigorifique qui se place à la sortie du condenseur. Il contient des produits tels que le gel de silice, l'alumine activée ou des cristaux d'alumino-silicate qui vont retenir l'humidité.

On distingue quatre types de fluide frigorigène (voir tableau ??) :

- ✓ les <u>CFC</u> pour "chlorofluorocarbone" (ex : le R12), totalement prohibé en raison de sa nocivité envers la couche d'ozone.
- \checkmark les <u>HCFC</u> pour "hydrochlorofluorocarbone" (ex : R22). Il sera prohibé à la fabrication d'appareil neuf, sa fabrication sera interdite après 2020 et sera totalement prohibé après 2030. Ce type de fluide possède une molécule avec un atome de chlore en moins, celui-ci remplacé par un atome d'hydrogène, ce qui le rend moins nocif envers la couche d'ozone.
- $\checkmark\,$ les <u>HFC</u> pour "hydrofluorocarbone" (ex : R134a, R404A, R407c, R410a), fluides actuellement les plus utilisés dans toutes les nouvelles installations, le chlore n'est plus présent.
- ✓ les fluides <u>organiques</u>, fluides d'origine naturelle, comme par exemple le butane, l'acétylène, le dioxyde de carbone ou encore l'ammoniac. Le dioxyde de carbone représente l'avenir de la climatisation, par contre l'ammoniac n'a plus d'avenir que dans le froid industriel en raison de sa haute toxicité; quand au butane il est très rarement utilisé en raison du risque d'explosion trop élevé.

CHAPITRE 2. CYCLE THERMODYNAMIQUE D'UNE MACHINE FRIGORIFIQUE À COMPRESSION DE VAPEUR

Groupe	Туре	Nom	Commentaires	T°évaporation à 1bar
1	CFC	R11, R12, R13, R502, R115	Interdits d'utilisation et de vente	N/A
	HCFC	R22 R408a R409a R403b R123	Le plus utilisé des HCFC est le R22, ils doivent disparaître de la circulation dans quelques années	-41 °C -44 °C
	HFC	R134a R413a R417a R404a R507 R407c R410a R23 R508b FX 80	Substitut du R12 Substitut du R22 Remplaçant du R22 en neuf	-26.2 °C -46.5 °C -47.1 °C -43.4 °C -51.5 °C -82.1 °C -88.3 °C
2	NH3	R717	Le plus dangereux de tous, mais le plus performant. Toxique à 0.2% Explosif à 15%	-33.3 °C
3	Hydrocarbonés	R290 R600a R1270	Propane, explosif à 1.2% Isobutène, explosif à 0.9% Propylène	-42.1 °C -11.7 °C -47.7 °C

TABLE 2.1 – Différents fluides frigorigènes par groupes .

Exemple : le chlorodifluorométhane CHCLF₂

- Chiffre des unités : 2 (\mathbf{F}_2)
- Chiffre des dizaines : $2 (\mathbf{H} + \mathbf{1})$
- Chiffre des centaines : 0 $(\mathbf{C} \mathbf{1})$ Ce qui nous donne 022 donc le gaz **R22** (R comme réfrigérant).

Les fluides frigorigènes sont identifiés par une numérotation qui est définie par le standard **ASHRAE 34** et par la norme internationale **ISO 817**.

	R-WXYZ S			
	Appellation courante	R-12	R-134a	R-1270
Nomenclature	Appellation pour la détermination de la formule	R_0012	R_0134a	R_1270
W = Nombre d'insaturation Carbone = Carbone (C=C)	C=C (double liaison)	0	0	1
X = Nombre de Carbone -1	Nombre d'atomes de Carbone C = X + 1	1	2	3
Y = Nombre d'Hydrogène +1	Nombre d'atomes d'hydrogène H = Y - 1	0	2	6
Z = Nombre de Fluor	Nombre d'atomes de fluor F = Z	2	4	0
	Nombre de Chlore Cl *	2	0	0
	Formule chimique	C Cl2F2	C2H2F4	CH3 CH=CH2
§ = symétrie si§ = Æ				
et asymétrie si§=a ou b	Symétrie	Symétrique Asymétrique Symétriqu		Symétrique
moins asymétrique que le fluide ayant § = b)	ae la molècule			

Série R-10 à R-50, R-100, R-200 et R-1000

<u>Série R-400</u>

Cette série est attribuée aux mélanges zéotropiques. Ces fluides présentent un glissement de température plus ou moins important selon le mélange. Les numérotations sont chronologiques dans l'ordre d'acceptation du fluide frigorigène par l'**ASHRAE**. R - 401A; R - 402A; R - 403B; R - 404A; R - 407C; R - 408A; R - 409A; R - 410A. En cas de mélanges de corps purs identiques, mais dans des proportions différentes, on associe alors une lettre majuscule en fin de numérotation (A, B ou C).

 $R - 407A : R - 32/R - 125/R - 134a \ 20/40/40(\%)$ $R - 407B : R - 32/R - 125/R - 134a \ 10/70/20(\%)$ $R - 407C : R - 22/R - 152/R - 134a \ 53/13/34(\%)$

Série R-500

La série 500 est attribuée aux mélanges azéotropiques. Pour une composition bien précise du mélange, ces fluides ne présentent pas de glissement de température. Les numérotations sont chronologiques dans l'ordre d'acceptation du fluide frigorigène par l'**ASHRAE** (R - 502; R - 507).

Série R-600

La série 600 est attribuée aux composés organiques divers. Par exemples : <u>Hydrocarbures</u> :R - 600 (butane); R - 600a : (iso butane). <u>Composés oxygénés :</u> R - 610 (éthyle éther); R - 611 (méthyle formate). <u>Composés sulfurés :</u> R - 620 (réservé pour une future attribution). <u>Composés azotés :</u> R - 630(méthyle amine); R - 631 (éthyle amine).

Série R-700

Cette série est attribuée aux composés inorganiques. Pour obtenir le numéro d'identification, on ajoute la masse molaire à 700. Par Exemples : Ammoniac (NH_3) : masse molaire 17g/mol donne R - 717. Dioxyde de carbone (CO_2) : masse molaire 44g/mol donne R - 744.

2.5.5 Les fluides frigorigènes et l'environnement

Le potentiel de réchauffement climatique global (GWP)

Le **GWP** est le potentiel de réchauffement climatique global (*global warming potential*) qui exprime le réchauffement d'un gaz à effet de serre comparé à celui du dioxyde de carbone. Le **GWP** que nous pourrions traduire par **PAES** (potentiel d'action sur l'effet

CHAPITRE 2. CYCLE THERMODYNAMIQUE D'UNE MACHINE FRIGORIFIQUE À COMPRESSION DE VAPEUR

de serre) est fonction de deux paramètres : la durée de présence atmosphérique (**DPA**) de la substance concernée et de ses caractéristiques radiatives. Le **GWP** absolu s'exprime en $W/an.m^2.ppm$. En général les industriels utilisent un **GWP** relatif par rapport au GWP du dioxyde de carbone fixé à 1. Le tableau ?? montre quelques valeurs de **GWP** relatifs. Ainsi, les **ODS** et **HFC** ont un fort pouvoir à effet de serre par rapport au CO_2 .

Dioxyde de carbone (CO_2)	1
Méthane	21
Oxyde nitreux (N ₂ O)	310
ODS	De 100 à 8000
HFC	De 140 à 11700
PFC	De 6500 à 9200
Hexafluorure de soufre (SF_6)	23900

TABLE 2.2 – Valeurs du **GWP** relatif d'après l'european partnership for Energy and Environment (**EPEE**). **ODS** : Ozone Depleting substances contrôlées par le protocole de Montréal. **PFC** : Perfluorcarbons..

L'effet de serre

L'effet de serre est le réchauffement de l'atmosphère sous l'effet des rayons solaires en présence de certains gaz. C'est le **GWP** qui permet de mesurer le potentiel d'un gaz à effet de serre. Cependant, il est important de prendre en considération la durée de vie du gaz dans l'atmosphère (**DPA**) et ses quantités produites. Par exemple, le CO_2 qui a un **GWP** très faible a une durée de vie de 5 siècles dans l'atmosphère alors qu'un réfrigérant n'a qu'une durée de vie de 20 ans maximum. C'est-à-dire que le réfrigérant va être détruit dans l'atmosphère.

L'ammoniac

L'ammoniac est très dangereux et toxique (forte odeur). Son impact sur l'environnement est très mauvais. Il est très soluble dans l'eau (33.1% en poids à $20^{\circ}C$). La dissolution s'accompagne d'un dégagement de chaleur. De plus il attaque le cuivre. C'est un gaz relativement inflammable et il forme des mélanges explosifs avec l'air. Il est très toxique pour l'homme (fonction respiratoire), et il attaque les différents types de matériaux (plastiques, caoutchoucs). C'est pourquoi il ne peut être utilisé que pour des applications industrielles où un contrôle rigoureux est exigé. L'utilisation élargie de l'ammoniac en tant que réfrigérant nécessiterait une révision complète de la technique industrielle de réfrigération.

Le dioxyde de carbone

Le dioxyde de carbone (CO_2) présente l'avantage d'être un fluide avec un **GWP** 3260 fois inférieur à celui du R404a. Le CO_2 peut être utilisé en mélange avec des **HFC** comme agent d'extinction et comme fluide frigorigène.

Le protocole de Montréal

En 1987, le protocole de Montréal relatif à des substances qui appauvrissent la couche d'ozone a finalement été arrêté après une série de réunions et de négociations. Son objectif final est l'élimination des substances qui appauvrissent la couche d'ozone.

Les signataires ont décrété l'arrêt des productions des CFC, HCFC et autres bromofluorocarbures avant le 31/12/1995 (pour l'union européen, l'arrêt de la production a été fixé pour le 31/12/1994). De nos jours, seuls les HFC sont habilités : On les appelle les substituts des CFC et HCFC.

Le règlement (CE) $n^{\circ} 2037/2000$ du parlement européen et du conseil du 29 juin 2000 relatif à des substances qui appauvrissent la couche d'ozone interdit désormais totalement l'utilisation des **CFC** et restreint sensiblement celle des HCFC. Concernant les CFC, depuis le 1er Octobre 2000 leur la production et leur utilisation sont interdites. Pour les **HCFC**, la production sera interdite à partir du 1^{er} janvier 2015 et depuis 1997, leur production est limitée.

Les conséquences pour l'industrie de la réfrigération sont assez importantes. Les problèmes vont concerner l'efficacité des installations et d'adaptation aux nouveaux fluides. Cela peut entraîner une diminution du domaine de la température de fonctionnement, des problèmes de lubrifications et de compatibilité entre réfrigérants et lubrifiants. Tous les fluides de substitution ne peuvent remplacer les **CFC** et **HCFC**.

2.6 Étude des performances

2.6.1 Coefficient de performance de Carnot (COP_C)

Ici, nous nous intéressons à l'influence des températures de condensation T_c et d'évaporation T_e sur le coefficient de performance de Carnot **COP**_C.

On a vu que les cycles réversibles ont deux propriétés importantes :

- Un cycle de réfrigération ne peut avoir un coefficient de performance supérieur à celui d'un cycle réversible fonctionnant entre les mêmes limites de température $COP < COP_{C}$.
- Tous les systèmes qui opèrent selon le cycle de Carnot, lorsqu'ils fonctionnent entre les mêmes limites de température, ont le même coefficient de performance.

Influence des températures de condensation T_c et d'évaporation T_e sur COP_C

La figure ?? représente l'évolution du coefficient de performance de Carnot $\mathbf{COP}_{\mathbf{C}}$ en fonction des températures de condensation T_c et d'évaporation T_e .

FIGURE 2.8 – Influence des températures de condensation T_c et d'évaporation T_e sur le COP de Carnot.

Les résultats obtenus montrent que l'évolution du $\operatorname{COP}_{\mathbf{C}}$ est inversement propor-

tionnelle à l'augmentation de la température de condensation T_c et est proportionnelle à l'augmentation de la température d'évaporation T_e .

On remarque aussi que pour une augmentation de la température de condensation T_c de 30 à 55°C, et pour une température d'évaporation fixée à $T_e = -35$ °C, une diminution du $\mathbf{COP_C}$ de 3, 66 à 2, 64. Tandis qu'avec une augmentation de la température d'évaporation T_e de -35 à -10°C, nous remarquons une augmentation du $\mathbf{COP_C}$ de 3, 66 à 6, 57 pour un $T_c = 30$ °C et une augmentation de 2, 64 à 4, 04 pour un $T_c = 55$ °C.

2.6.2 Coefficient de performance de Lorenz pour les machines frigorifiques (COP_L)

Contrairement au cycle de Carnot, dans le cycle de Lorenz les températures des deux fluides extérieurs varient au cours de l'échange de chaleur et la résistance thermique entre le réfrigérant de travail et le fluide externe reste négligeable. Par conséquent, la température du réfrigérant doit changer au cours des deux processus d'échange de chaleur pour égaler le changement de température du fluide externe.

Ce cycle est comme complètement réversible lors qu'il opère entre deux fluides qui ont chacun une capacité de chaleur finie et constante.

La figure ?? est une vue schématique d'un cycle de Lorenz dans le diagramme (T-s). A noter que ce cycle ne fonctionne pas entre deux limites de température fixes. La chaleur est absorbée par fluide frigorigène de l'état 4 à l'état 1, ce processus est supposé être linéaire sur le diagramme (T-s), ce qui représente un fluide avec une capacité de chaleur constante. La température du réfrigérant est augmentée en compression isentropique de l'état 1 à l'état 2, le procédé 2-3 est un processus de rejet de chaleur dans lequel la température du réfrigérant diminue linéairement avec le transfert de chaleur. Le cycle se termine par une détente isentropique entre l'état 3 et 4.

Les processus d'addition de chaleur et de rejet de chaleur sont parallèles si l'ensemble du cycle est dessiné comme un parallélogramme sur les coordonnées (T - s).

Un cycle de réfrigération de Carnot, fonctionnant entre T_0 et T_e , se situerait entre les états (1, a, 3, et b) (figure ??); le cycle Lorenz a un effet de réfrigération inférieure et nécessite plus de travail. Néanmoins, ce cycle est un cycle de référence plus pratique quand un système de réfrigération fonctionne entre deux fluides monophasiques, tels que l'air ou

l'eau. Les transferts d'énergie dans un cycle de réfrigération de Lorenz sont les suivantes, où $\Delta T = (T_{Cs} - T_{Ce}) = (T_{fe} - T_{fs})$ est la variation de température du fluide frigorigène au cours de chacun de ces deux processus d'échange de chaleur.

FIGURE 2.9 – Cycle de Lorenz dans le diagramme (T - s).

Le bilan thermodynamique du cycle de lorenz s'écrit :

• La chaleur rejetée a l'extérieur :

$$Q_C = \left(T_{cs} + \frac{\Delta T}{2}\right)(s_2 - s_3) \tag{2.4}$$

• La chaleur absorbée par l'évaporateur :

$$Q_e = \left(T_{fe} + \frac{\Delta T}{2}\right)(s_2 - s_3) \tag{2.5}$$

• Le travail consommé par le compresseur :

$$W = (Q_C - Q_e)$$

D'où :

$$W = \left(T_{cs} + \frac{\Delta T}{2}\right)(s_2 - s_3) - \left(T_{fe} - \frac{\Delta T}{2}\right)(s_2 - s_3)$$
alors :

$$W = (T_{cs} + \Delta T - T_{fe}) (s_2 - s_3)$$
(2.6)

Finalement le $\mathbf{COP}_{\mathbf{L}}$ s'écrit :

$$\mathbf{COP}_{\mathbf{L}} = \frac{T_{fe} - \frac{\Delta T}{2}}{T_{cs} - T_{fe} + \Delta T}$$
(2.7)

Influence des températures de condensation T_c et d'évaporation T_e sur COP_L

Une étude paramétrique de l'équation ?? nous permet de tracer les courbes représentées dans la figure ??. La figure ?? représente l'évolution du coefficient de performance du cycle de Lorenz $\mathbf{COP}_{\mathbf{L}}$ en fonction des températures de condensation T_c et d'évaporation T_f pour une variation de la température du fluide frigorigène au cours de la condensation et de l'évaporation de $\Delta T = 5^{\circ}$. La figure montre que l'évolution du $\mathbf{COP}_{\mathbf{L}}$ est inversement proportionnelle à l'augmentation de la température de condensation et elle est proportionnelle à l'augmentation de la température de l'évaporation.

FIGURE 2.10 – Influence des températures de condensation T_c et d'évaporation T_e sur le COP de Lorenz.

D'après la figure ??, on remarque une augmentation de la température de condensation T_c de 30 à 55°C pour une température d'évaporation $T_e = -35$ °C fixe, engendre une

diminution du $\mathbf{COP_L}$ de 3, 36 à 2, 48. Tandis qu'avec une augmentation de la température d'évaporation de -35 à $-10^{\circ}C$; nous avons une augmentation du $\mathbf{COP_L}$ de 3, 36 à 5, 79 pour un $T_c = 30^{\circ}C$ et une augmentation de 2, 48 à 3, 72 pour un $T_c = 55^{\circ}C$.

Influence de condensation T_c et d'évaporation T_e sur le rapport COP_L/COP_C

Dans ce paragraphe nous allons étudier l'influence des températures de condensation et d'évaporation sur le rapport $\frac{\text{COP}_{L}}{\text{COP}_{C}}$.

Les figures ?? et ?? représentent respectivement l'évolution du rapport $\frac{\text{COP}_{\mathbf{L}}}{\text{COP}_{\mathbf{C}}}$ en fonction des températures de condensation T_c et d'évaporation T_e pour une variation de la température du fluide frigorigène au cours de la condensation et de l'évaporation $\Delta T = 5^{\circ}C$. On remarque que l'évolution du rapport $\frac{\text{COP}_{\mathbf{L}}}{\text{COP}_{\mathbf{C}}}$ est inversement proportionnelle à l'augmentation de la température de condensation T_c et elle est proportionnelle à l'augmentation de la température de l'évaporation T_e . Une augmentation de la température de condensation T_c de 30 à 55°C engendre une diminution du rapport $\frac{\text{COP}_{\mathbf{L}}}{\text{COP}_{\mathbf{C}}}$ de 0.9188 à 0.8804. Tandis qu'avec une augmentation de la température d'évaporation T_e de -35 à $-10^{\circ}C$ engendre une augmentation de ce rapport de 0.9188 à 0.9374.

FIGURE 2.11 – Influence des températures de condensation T_c et sur le rapport COP_L/COP_C .

FIGURE 2.12 – Influence des températures d'évaporation T_e et sur le rapport $\mathbf{COP_L}/\mathbf{COP_C}$.

Remarque

Si la variation de la température du fluide frigorigène au cours de la condensation et de l'évaporation de ΔT n'est pas la même, l'expression du coefficient de performance de Lorenz (**COP**_L) s'écrit :

$$\mathbf{COP}_{\mathbf{L}} = \frac{T_{me}}{T_{mc} - T_{me}} \tag{2.8}$$

Les températures T_m introduites sont des **températures moyennes logarithmiques**, elle s'expriment comme suit :

$$T_{me} = \frac{(T_{fs} - T_{fe})}{\ln(\frac{T_{fs}}{T_{fe}})}$$
(2.9)

$$T_{mc} = \frac{(T_{cs} - T_{ce})}{\ln(\frac{T_{cs}}{T_{ce}})}$$
(2.10)

2.7 Applications industrielles du froid

Parmi les différentes applications du froid, on peut citer :

- Domaine médical : cryochirurgie, conservation de certains produits, organes...
- Industries alimentaires : conservation des aliments, pasteurisation des liquides...
- Industries chimiques et pétrochimiques : liquéfaction des gaz pour le transport, déparaffinage, débenzolage...
- Génie civil : refroidissement des bétons, congélation des sols aquifères...
- Conditionnement des locaux : rafraichissement de l'air, conditionnement des patinoires, canons à neige...
- Laboratoires d'essai et de recherche : étude des matériaux et comportement de la matière à très basse température...
- Production de neige carbonique : maintien du froid à basse température (-80°C)

Chapitre 3

Composants d'une machine frigorifique à compression de vapeur

Les principaux équipements dans les installation frigorifiques et les pompe à chaleur sont :

- Les compresseurs.
- Les évaporateurs.
- Les condenseurs.
- Les organes de détente.

Dans cette section nous présentons chacun de ces composants.

3.1 Compresseurs

Le compresseur représente le principal organe mécanique mobile d'une machine frigorifique ou d'une pompe à chaleur. Différents types de compresseurs sont utilisés :

- Dans le domaine de petites puissances, les compresseurs hermétiques sont utilisés. Le compresseur et le moteur sont dans une même enveloppe soudée(voir figure ??). La puissance du moteur est en général limitée à une quinzaine de kilowatts.
- Dans le compresseur dit semi-hermétique, le moteur et le compresseur sont aussi dans la même enveloppe, mais ils sont accessibles et démontables (figure ??). Le gaz refroidit également le moteur. La puissance du moteur s'étend jusqu'à à une cinquantaine de kilowatts.

FIGURE 3.1 – Compresseur hermétique à piston.

FIGURE 3.2 – Compresseur semi-hermétique à piston.

— Les compresseurs dans le domaine industriel sont souvent conçus pour être couplés à un moteur indépendant. Ils doivent être reliés : soit par accouplement direct ou par un ensemble poulies-courroies (figure ??). Le fonctionnement à haute température impose des compresseurs **ouverts** car la tache du refroidissement ne peut plus être assurée par le fluide frigorigène.

En pratique on distingue deux grands groupes de compresseurs :

 a) Les compresseurs volumétriques, pour lesquels la compression est due à une réduction de volume contenant le gaz à comprimer. Dans cette catégorie les principaux types de compresseurs utilisés sont :

FIGURE 3.3 – Compresseurs ouverts.

- alternatifs à pistons, mono-étagés ou bi-étagés, simple ou double effet (figures ?? et ??),
- rotatifs à palettes (figure ??),
- rotatifs à vis, mono et double vis (figures ?? et ??).
- b) Les turbocompresseurs, dans lesquels l'énergie cinétique des gaz est transformée en pression. Dans cette catégorie, on distingue :
 - Les compresseurs centrifuges (figure ??),
 - Les compresseurs axiaux (figure ??).

FIGURE 3.4 – Compresseur alternatif à piston, simple effet.

CHAPITRE 3. COMPOSANTS D'UNE MACHINE FRIGORIFIQUE À COMPRESSION DE VAPEUR

FIGURE 3.5 – Compresseur alternatif à piston, double effet.

FIGURE 3.6 – Compresseur rotatif à palettes.

FIGURE 3.7 – Compresseur à monovis.

CHAPITRE 3. COMPOSANTS D'UNE MACHINE FRIGORIFIQUE À COMPRESSION DE VAPEUR

FIGURE 3.8 – Compresseur à double vis.

 $\label{eq:Figure 3.9} Figure \ 3.9 - Turbo compresseur \ centrifuge.$

FIGURE 3.10 - Turbocompresseur axial.

3.1.1 Les compresseurs volumétriques

En règle générale, ce qui distingue les compresseurs volumétriques des turbocompresseurs, en dehors du principe même de compression, c'est d'une part le taux de compression élevé plus élevé par étage, le débit volumique plus faible, et d'autre part, la présence éventuelle d'une huile assurant la lubrification, l'étanchéité et parfois le refroidissement des gaz. Le tableau ?? donne le performances de quelques types de compresseurs volumétriques

Compresseurs	Débit (m^3/h)	Taux de com- pression optimum	rendement isentro- pique	vitesse de rotation (tr/min)	lubrification
à piston	0-10000	2-8	0.6-0.8	0-1450	-sans (sec) -huile
double vis	300-35000	3-5	0.6-0.8	3000	-huile -phase liq
mono-vis	200-20000	3-5	0.6-0.8	3000	-huile -phase liq
à palettes	10- 10000	4-8	0.5-0.7	500-2000	-huile

TABLE 3.1 – Performances de quelques types de compresseurs volumétriques.

3.1.2 Les turbocompresseurs

Selon la direction moyenne de la vitesse donnée au fluide, on distingue deux types de compresseurs ou compresseurs dynamiques.

- le compresseur centrifuge (vitesse radiale)
- le compresseur axial (vitesse parallèle à l'axe)
- le compresseur hélico-centrifuge dans lequel la vitesse moyenne fait un angle ouvert avec l'axe.

Les compresseurs centrifuges couvrent une plage de débit volumétrique pouvant aller jusqu'à $200000 m^3/h$. Pour les plus gros débits, l'influence des fuites internes et autres pertes secondaires est faible. Dans le domaines des pompes à chaleur on peut être conduit

à comprimer des débits beaucoup plus faibles avec ce type de machine (< $5000 m^3/h$) et ces pertes affectent alors le rendement global. De plus, pour ces faibles débits, le compresseur doit tourner à grande vitesse (30000 à 50000 tr/min), ce qui est difficilement compatible avec un entrainement par moteur électrique classique (1500 ou 3000 tr/min) eu égard à l'influence qu'aurait le multiplicateur de vitesse sur l'investissement et les pertes mécaniques.

Les compresseurs axiaux sont peu employés dans le domaine des machines frigorifiques et pompes à chaleur car leurs débits volumiques à faible taux de compression ne correspondent pas à des applications classiques de pompes à chaleur. Par rapport aux compresseurs centrifuges ils ont un meilleur rendement de compression (voir tableau ??).

En règle générale les turbocompresseurs sont calculés et réalisés pour des conditions de fonctionnement bien déterminées : le rendement maximum correspond à une valeur unique du débit et de taux de compression. La modification de la puissance du compresseur entraine des complications techniques (aubes de pré-rotation réglable, vitesse variable,...etc) coûteuses. Par ailleurs, il faut noter que l'absence du lubrifiant dans le corps du compresseur et leur plus faible sensibilité à la présence de liquide en cours de compression par rapport aux compresseurs à piston sont des avantages certains.

Compresseurs	Débit (m^3/h)	Taux de compres- sion	rendement isentro- pique	vitesse de rota- tion (tr/min)
centrifuges	2000-20000	2*	0.7-0.85	2000-40000
axiaux	$10000 - 2.10^{6}$	1,8*	0.8-0.9	2000-20000

TABLE 3.2 – Performances des turbocompresseurs.

(*) On ne peut pas caractériser un compresseur par le taux de compression puisque celui-ci est fonction de nature du fluide et de la vitesse périphérique de la roue. A titre d'exemple, il est de 2 pour la vapeur d'eau à $100 \,^{\circ}$ à l'aspiration.

3.2 Condenseurs

Dans les machines frigorifiques et pompes à chaleur, la fonction du condenseur est de transférer à la source chaude l'énergie des vapeurs issues du compresseur. Parallèlement à sa fonction principale de condensation il peut servir à la désurchauffe des vapeurs et au sous-refroidissement du liquide où un liquide en ébullition. Les condenseurs différent suivant le type de fluide recevant la chaleur.

les types de condenseurs sont :

3.2.1 Les condenseurs à air

On utilise l'air ambiant pour absorber la chaleur que le condenseur doit dissiper.

L'air a une très faible chaleur massique : $C_{pas} = 1,02kJ/kg.K.$ (ou 0,28Wh/kg). Le coefficient d'échange global **K** en $W/m^2.K$ est faible lorsque l'un ou les deux fluides sont des vapeurs. Ces deux caractéristiques font que la surface d'échange **S** du condenseur doit être importante, le volume d'air recyclé sur le condenseur doit être important, ceci implique des appareils rapidement encombrants équipant seulement les installations ménagères et commerciales. On distingue :

Condenseur à air à circulation naturelle (figure ??) :

Ce type de condenseur équipant certaines armoires ménagères est constitué d'un serpentin recouvert de treillis de fil métallique soudé ou d'une feuille de tôle ajourée formant des ailettes.

FIGURE 3.11 – Condenseur à air à circulation naturelle.

Condenseur à air à circulation forcée (figure ??) :

Lorsque la surface du condenseur est trop importante, il est indispensable d'utiliser une ventilation. La constitution du condenseur est identique à celle de l'évaporateur, c'est un tube lisse serti d'une multitude d'ailettes augmentant la surface d'échange. Le condenseur est ventilé par une hélice montée en bout d'arbre pour les groupes ouverts ou par un ou plusieurs motoventilateurs sur les groupes hermétiques.

FIGURE 3.12 – Condenseur à air à circulation forcée.

3.2.2 Les condenseurs à eau

Technologiquement, les condenseurs à eau offrent plus de diversité que les condenseurs à air. Le coefficient d'échange global \mathbf{K} est amélioré, le refroidissement étant assuré par un liquide et la chaleur massique de l'eau est de : 4, 18kJ/kg.K (ou 1.16Wh/kg, 4 fois supérieure à l'air). Grâce à ces deux qualités, la dimension d'un condenseur à eau à puissance égale sera nettement plus petite que celle d'un condenseur à air, \mathbf{K} étant amélioré de 10 à 30 fois. Les types existant sont :

Condenseur à immersion (figure ??) :

Constitué d'une bouteille faisant également office de réservoir de liquide.

CHAPITRE 3. COMPOSANTS D'UNE MACHINE FRIGORIFIQUE À COMPRESSION DE VAPEUR

FIGURE 3.13 – Condenseur à immersion.

Condenseur à double tube et contre-courant (figure ??) :

Pour permettre un bon échange, deux tubes concentriques sont parcourus, l'un par l'eau, l'autre par le réfrigérant. L'échange thermique est amélioré par la circulation des deux fluides à contre-courant.

L'eau froide pénètre dans le condenseur et ressort réchauffée par la zone de surchauffe. Le réfrigérant passe en périphérie profitant du refroidissement de l'eau à l'intérieur et de l'air à l'extérieur.

Condenseur multitubulaire (figure ??) :

Ce genre d'échangeurs sont aussi appelés **échangeurs à tubes et calendre**. Le fluide circule dans les tubes et l'eau dans la calendre.

Condenseur à plaques (figure ??) :

Les condenseur à plaques sont encore peu répandus dans l'industrie frigorifique. Les problèmes d'utilisation de tels appareils sont d'ordre technologique (tenue chimique et mécanique des joints)

FIGURE 3.14 – Condenseur à double tubes et contre courant.

FIGURE 3.15 – Condenseur multitubulaire.

FIGURE 3.16 – Condenseur à plaques.

3.3 Évaporateurs

L'évaporateur est un échangeur dans lequel le fluide frigorigène liquide, après détente, est évaporé à température constante en prélevant de la chaleur au milieu ambiant à refroidir.

L'évaporateur doit assurer le passage du flux calorifique provenant du milieu à refroidir au fluide frigorigène (R12 - R22 - R502) ceci ce faisant à température constante par libération de la chaleur latente de vaporisation. L'absorption de ce flux calorifique ne nécessite pas de zones fonctionnelles contrairement au condenseur car le fluide est déjà détendu et à température d' évaporation.

Le schéma représenté dans la figure ?? montre que l'évaporateur est rempli d'un mélange hétérogène de liquide et de vapeur, mélange d'autant plus riche en vapeur que l'on s'éloigne du point d'injection.

FIGURE 3.17 – Schéma de fonctionnement d'un évaporateur.

3.3.1 Principaux types d'évaporateurs

La fonction de l'évaporateur dans les machines frigorifiques et pompes à chaleur est de puiser de la chaleur à la source froide par évaporation complète du frigorigène. Dans certains cas, il assure également la surchauffe de celui-ci. Le fluide frigorigène entre dans l'évaporateur avec un titre de vapeur non nul. Le fluide primaire peut être un gaz, un liquide, un gaz humide ou un fluide se condensant. Les principaux types d'évaporateurs sont :

a) les évaporateurs à air :

On peut les installer dans les enceintes à température positive et négative. On peut citer :

a-1) Évaporateurs à circulation naturelle :

évaporateur à batteries de tubes à ailettes (figure ??) : Ils sont constitués de tubes
 lisses et sertis d'une multitude d'ailettes augmentant la surface d'échange.

FIGURE 3.18 – Évaporateur à batterie de tubes à ailettes.

— évaporateur Roll Bond (figure ??) : Ils sont fabriqués à partir de deux feuilles d'aluminium laminées dont une est recouverte d'une pâte spéciale figurant le tracé du circuit. La pâte est ensuite chassée et le circuit fermé gonflé hydrauliquement pour former les canaux de passage. La plaque entre les canaux de passage du fluide sert d'ailette pour augmenter le contact thermique entre le fluide frigorigène et le compartiment froid.

FIGURE 3.19 – Évaporateur Roll Bond.

FIGURE 3.20 – Évaporateur à plaque eutectique.

- évaporateurs à plaques eutectiques (figure ??) : Constitués d'un caisson en tôle parcourue par un serpentin de fluide frigorifique baignant une saumure remplissant le caisson à 80%. Ils sont utilisés essentiellement dans les conteneurs, ils permettent entre deux fonctionnements un arrêt prolongé de l'installation frigorifique sur le terrain et durant un transport de vivres.

Pendant le fonctionnement de l'installation, la saumure doit se congeler complètement. La température de solidification inscrite sur la plaque eutectique se situe entre $-1^{\circ}C$ et $-26^{\circ}C$ $\Delta T = 3$ à $5^{\circ}C$.

A l'arrêt, la décongélation de la saumure, de par sa chaleur latente de fusion, permet un refroidissement prolongé des denrées.

Le ΔT entre la plaque et l'ambiance est difficilement contrôlable et maintenu.

a-2)Évaporateurs à circulation forcée :

Sont des évaporateurs à ailettes équipés d'un ventilateur qui augmente le débit d'air sur une partie des ailettes abaissant le ΔT et augmentant le coefficient d'échange global K. Les évaporateurs sont entièrement carénés, la totalité du serpentin est influencée par le flux d'air. Trois grands types d'évaporateurs peuvent se rencontrer :

- évaporateurs plafonniers fixés au plafond des chambres froides (figure ??);
- évaporateurs muraux placés contre, et fixés sur les parois des chambres froides (figure ??);
- frigorifères à buse reposant sur le sol des chambres froides (figure ??).

FIGURE 3.21 – Évaporateur plafonnier.

FIGURE 3.22 – Évaporateur mural.

FIGURE 3.23 – Frigorifère à buse.

b)les évaporateurs à liquide :

on les appelle aussi $\acute{e}vaporateurs$ à eau . On peut citer :

— Évaporateur immergé : Utilisé sur des refroidisseurs d'eau de saumure et les fabriques de crème glacée. Pour la crème glacée, l'évaporateur en forme de serpentin est immergé dans une saumure "ex : glycol" dans laquelle baigne le bol de fabrication de crème glacée (figure ??). La température de congélation de la saumure se situe très en dessous de la température d'évaporation ($\Delta T \ refrigerant - crème \ glacée \ est \ de \ 14 \ a \ 20K$).

FIGURE 3.24 – Fabrique de crème glacée.

 Évaporateur à double faisceau : Ils sont également appelés évaporateurs coaxiaux. Ils sont constitués de deux tubes coaxiaux, le plus souvent enroulés en hélice (figure ??). Dans le tube central circule le fluide frigorigène qui se vaporise en refroidissant le fluide circulant dans l'espace annulaire compris entre les deux tubes, la circulation s'effectuant de préférence à contre-courant.

Cet évaporateur convient pour les petites et moyennes puissances et le coefficient global d'échange **K** est compris entre 500 et 800W/m.K.

FIGURE 3.25 – Évaporateur double tube.

- Évaporateurs multitubulaires : Ils sont constitués d'un grand nombre de tubes qui sont proches entre eux et qui sont disposés en parallèle dans un corps cylindrique. Ils peuvent être verticaux où horizontaux. Ces tubes sont associés pour former des passes (passages). La circulation du frigorigène peut se faire à l'intérieur des tubes (évaporateurs à détente sèche où "dry-ex", fig??). Elle peut se faire à l'extérieur des tubes (évaporateurs noyés, fig??). La différence de conception est due en particulier à la condition de miscibilité des fluides avec le lubrifiant. L'ailetage des tubes peut être interne ou externe.
- Évaporateurs à plaques (figure ??) : Ils présentent les avantages de poids, d'encombrement réduit et de la possibilité de modification de leurs surfaces totale. Les mêmes problèmes que pour les condenseurs (joints) existent.

FIGURE 3.26 – Évaporateur à détentes sèche où "dry-ex".

FIGURE 3.27 – Évaporateur noyé.

FIGURE 3.28 - Évaporateur à plaques.

3.4 Sous-refroidisseurs et Surchauffeurs

Les principaux échangeurs monophasiques pouvant exister sur une installation sont le sous-refroidisseur et le surchauffeur. Ces éléments sont souvent des échangeurs multitubulaires avec plusieurs passes sur le fluide circulant dans les tubes et des chicanes pour le fluide circulant à l'extérieur des tubes. Le surchauffeur est généralement un échangeur liquide-gaz. Un ailetage côté gaz est nécessaire pour répartir également les résistances thermiques entre les deux fluides.

3.5 Détendeurs

Le détendeur peut être considéré comme le dernier élément constitutif important d'une machine frigorifique ou d'une pompe à chaleur.

Situé entre la haute pression(après la condensation du frigorigène) et la basse pression (avant l'évaporation du frigorigène) il fait subir au fluide frigorigène, grâce à un orifice calibré, la perte de charge nécessaire. Le fluide frigorigène pénètre dans le détendeur à l'état liquide (sous-refroidi ou non) et haute pression et en ressort à basse pression sous forme d'un mélange liquide-vapeur d'autant plus riche en vapeur que la pression d'évaporation (basse pression) est faible.

Parallèlement, le détendeur assure l'alimentation automatique de l'évaporateur en fluide frigorigène. Il se comporte en dispositif ne fournissant à l'évaporateur que la stricte quantité du fluide frigorigène indispensable pour prélever l'énergie provenant de la source froide. C'est dire toute l'importance que revêt cet organe de régulation, dont le mauvais fonctionnement ou le dimensionnement incorrect empêche l'installation de travailler à son point de fonctionnement nominal.

La détente du fluide frigorigène se fait sans récupération de travail. En traversant l'orifice calibré du détendeur, le liquide subit une chute de pression provoquant, d'une part, sa vaporisation partielle et , d'autre part, son refroidissement jusqu'à la température d'évaporation du liquide restant. De plus cette détente est isenthalpique au cours de laquelle sa quantité de chaleur ne varie pas (le liquide avant la détente et le mélange liquide-vapeur après celle-ci ont la même enthalpie). Cette détente ne s'accompagne que de transfert d'énergie et d'une modification de l'état physique du fluide.

Selon la technologie employée pour l'évaporateur, ou selon la puissance de l'installation, il existe différents types de détendeurs :

3.5.1 Les détendeurs capillaires

Le tube capillaire ou détendeur capillaire permet d'assurer la détente du fluide frigorigène et l'alimentation de l'évaporateur en fluide détendu. Il relie le condenseur avec l'évaporateur. Ce mode d'alimentation est réservé aux installations frigorifiques de faible puissance et pour la charge frigorifique peu variable (figure **??**).

FIGURE 3.29 – Tube capillaire.

La détente du fluide frigorigène est obtenue par chute de pression lors de son passage dans le tube. Ce dernier est solidaire de tuyauterie d'aspiration, ce qui évite la vaporisation partielle empêchant ainsi la circulation libre du fluide.

La détermination des dimensions à donner à un détendeur est difficile et doit faire l'objet d'essais sérieux et minutieux. Malgré tout, des variations de charge à l'évaporateur ou au condenseur (dues au changement du climat par exemple) provoquent facilement une sous ou une suralimentation de l'évaporateur.

3.5.2 Les détendeurs automatiques pressostatiques

Un détendeur pressostatique contrôle le débit de fluide frigorigène admis à l'évaporateur de façon à maintenir constante la pression à l'entrée de ce dernier et cela quelle que soit la charge frigorifique.

La machine frigorifique étant à l'arrêt, la pression dans l'évaporateur est supérieure à la valeur réglée pour le point de fonctionnement nominal et le détendeur pressostatique est fermé. Lorsque le compresseur est mis en marche, il aspire les vapeurs contenues dans l'évaporateur : ce dernier se vide et la pression d'évaporation diminue. Lorsque les forces d'ouverture deviennent prépondérantes, le détendeur s'ouvre, permettant ainsi l'injection de fluide frigorigène dans l'évaporateur.

L'avantage du détendeur automatique pressostatique est qu'il permet à l'installation de travailler dés sa mise en service dans les conditions du régime permanent. Les inconvénients sont de n'utiliser la surface active de l'évaporateur qu'en fin du cycle fonctionnel d'une part, et de ne réagir à une variation importante mais brève de charge thermique d'autre part. Ce dernier point peut entrainer un coup de liquide au compresseur si la puissance fournie à l'évaporateur chute brusquement.

L'utilisation du détendeur automatique pressostatique se limite donc à l'alimentation des évaporateurs d'installations à charge thermique faible et peu variable (emploi fortement déconseillé dans le cas général).

3.5.3 Les détendeurs thermostatiques

Ces détendeurs sont également appelés à **surchauffe constante**. A la sortie du détendeur (entrée de l'évaporateur) le fluide frigorigène est dans l'état diphasique (mélange liquide- vapeur). Au cours de son parcours dans l'évaporateur, la phase liquide va régulièrement diminuer au profit de la phase vapeur jusqu'à' à totalement disparaitre lorsque l'évaporation est complète. Il est souhaitable de faire coïncider cette disparition avec la sortie de l'évaporateur, pour diverses raisons, dont une meilleure efficacité de l'échange.

A la charge thermique constante de l'évaporateur, si le débit du fluide frigorigène diminue, l'évaporation se terminera plus tôt, avant la sortie de l'évaporateur et cela d'autant plus que le débit sera faible, la vapeur sortira surchauffée de l'évaporateur. Si le débit du fluide frigorigène augmente, le phénomène contraire se produira : tout le liquide ne sera pas évaporé en sortie de l'évaporateur, ce qui peut être dangereux pour le compresseur (coup de liquide).

Ainsi le fait de rendre solidaire le débit du fluide frigorigène dans le détendeur et la surchauffe des vapeurs à la sortie de l'évaporateur permet un fonctionnement correct de la machine frigorifique, c'est ce qui réalisent les détendeurs thermostatiques. Il existe deux types de détendeurs thermostatiques :

a) Les détendeurs thermostatiques à égalisation de pression interne

Un détendeur thermostatique règle le débit de fluide frigorigène admis dans l'évaporateur de façon à maintenir constante la surchauffe des vapeurs en sortie. Il permet ainsi un remplissage optimal de l'évaporateur et évite les coups de liquide, quelle que soit la charge thermique.

Un détendeur thermostatique (figure ??)est formé essentiellement d'une vanne à pointeau et d'un train thermostatique (1). Le train thermostatique contient une substance (le plus souvent une charge liquide/vapeur) dont la pression est représentative de la température du bulbe. Cette pression p_b s'applique sur la face supérieure d'une membrane (2), alors que sa face inférieure est soumise à la pression p_0 du fluide frigorigène détendu. Le pointeau (6) est solidaire de la membrane grâce à un axe de commande (4) : la position de la membrane et donc l'ouverture du détendeur dépendent de la différence $(p_b - p_0)$, qui est représentative de la surchauffe. La consigne de surchauffe est ajustée par le ressort de réglage (3).

Si le bulbe est correctement positionné sur la conduite d'aspiration en sortie de l'évaporateur, la pression dans le train thermostatique est représentative de la température du fluide frigorigène à cet endroit, et le détendeur permet de contrôler la surchauffe des vapeurs quittant l'évaporateur. Le plus souvent, le train thermostatique est chargé avec le même fluide que celui utilisé dans le circuit frigorifique.

À l'arrêt du compresseur, il existe en sortie de l'évaporateur une surchauffe résiduelle, qui ne s'annule que progressivement (inertie thermique). Le détendeur reste ouvert et laisse pénétrer du liquide dans l'évaporateur. Il y a donc un fort risque de coup de liquide au

CHAPITRE 3. COMPOSANTS D'UNE MACHINE FRIGORIFIQUE À COMPRESSION DE VAPEUR

FIGURE 3.30 – Schéma de principe d'un détendeur thermostatique à égalisation de pression interne .

prochain démarrage. Pour éviter cette éventualité, on place toujours un robinet solénoïde sur la ligne liquide, en amont du détendeur. Ce robinet est normalement fermé et asservi au fonctionnement du compresseur.

b) Les détendeurs thermostatiques à égalisation de pression externe

On dimensionne en général les organes **BP** d'un circuit frigorifique pour que la vitesse des vapeurs de frigorigène soit comprise entre 8 et 12m/s pour une température d'évaporation positive. Pour une température négative, la vitesse des vapeurs peut atteindre 15 à 16m/s. Les chutes de pression p dans l'évaporateur peuvent donc être importantes. La pression des vapeurs en sortie de cet échangeur est alors nettement inférieure à celle en sortie du détendeur. Or, avec le détendeur thermostatique à égalisation de pression interne, la différence de pression prise en compte ne correspond plus, dans le cas où il y a de fortes pertes de charge dans l'évaporateur, à la surchauffe réelle des vapeurs en sortie. L'évaporateur est alors moins bien alimenté; il contient moins de liquide, et le coefficient d'échange sera diminué.

Dans le cas où les chutes de pression entre la sortie du détendeur et celle de l'évaporateur sont supérieures à 0, 4bar, on utilise un détendeur à égalisation de pression externe. Le détendeur à égalisation de pression externe permet bien de contrôler la surchauffe réelle en sortie d'évaporateur. Le tube d'égalisation de pression doit être raccordé sur la génératrice supérieure de la canalisation d'aspiration, en sortie d'évaporateur, et après le bulbe.

Pour ce type de détendeur, ce n'est plus la pression régnant à l'entrée de l'évaporateur qui appuie sous la membrane donc participe à l'équilibre des forces agissant sous le pointeau mais plutôt la pression disponible à la sortie de l'évaporateur.

Du point de vue de la constitution, ce détendeur est similaire au détendeur à égalisation de pression interne avec en plus un piquage réalisé entre la sortie de l'évaporateur et le détendeur, il s'agit du tube à égalisation de pression externe (figure ??). Avec cet artifice, l'effet des pertes de charge élevées de l'évaporateur est neutralisé.

FIGURE 3.31 – Schéma de principe d'un détendeur thermostatique à égalisation de pression externe.

3.5.4 Les détendeurs électroniques

Un détendeur électronique comprend un régulateur électronique, un détendeur, deux capteurs de température et un capteur de pression (interne ou externe) (figure ??). En effet, la grandeur réglée n'est plus la surchauffe des vapeurs, mais la différence de leur température entre l'entrée et la sortie de l'évaporateur. À cause des pertes de charge, la consigne réglée est donc supérieure à la surchauffe.

On trouve maintenant des détendeurs électroniques avec un capteur de température et un capteur de pression. Avec la conversion $T_{sat} = f(p)$, pour le fluide frigorigène considéré, le détendeur peut alors contrôler la surchauffe $(T - T_{sat})$ en sortie d'évaporateur.

FIGURE 3.32 – Détendeurs électronique.

Le régulateur peut éventuellement remplir une ou plusieurs fonctions complémentaires, telles que thermostat (le report des informations), contrôle du dégivrage, alarme, arrêt de l'installation. On trouve essentiellement deux principes de régulation :

- Régulation proportionnelle intégrale.
- Régulation par modulation de la longueur et de la fréquence des impulsions.

3.6 Analyse énergétique, entropique et exérgétique d'un système frigorifique à compression de vapeur

Le cycle de la machine frigorifique à compression de vapeur, schématisé dans la figure??, peut être analysé en appliquant le principe de la conservation de masse, le premier principe de la thermodynamique et faire le bilan entropique pour chaque composant. Les variations des énergies cinétique et potentielle sont supposées négligeables.

L'exérgie représente la qualité thermodynamique de l'énergie. Toute transformation réelle réalisée dans un composant d'une installation thermique est irréversible. Cette irréversibilité qui est inévitable entraîne une dégradation d'une partie de l'énergie apportée au système. Cette partie dégradée se transforme en *anergie* dans le milieu extérieur. Plus l'énergie possède une grande partie d'exérgie, plus elle est intéressante du point du vu technique et économique.

FIGURE 3.33 – Machine frigorifique à compression de vapeur mono-étage.

En d'autres termes l'exergie est le travail utile maximal qui peut être produit par un système se trouvant dans un état donné et dans un milieu donné.

L'exergie est une variable thermodynamique qui dépend non seulement du système, mais aussi de son milieu extérieur. L'exergie d'un système en équilibre thermodynamique est nulle. Cet état est appelé **"point mort"** caractérisé par les paraméteres T_0 , P_0 .

D'une manière générale l'exergie par unité de masse d'un système fermé est :

$$E_X = (u - u_0) + P_0(V - V_0) - T_0(s - s_0) + \frac{v^2}{2} + gz$$
(3.1)

Les variables u_0 , V_0 et s_0 sont estimées au point mort.

l'exergie par unité de masse d'un système ouvert s'exprime par :

$$E_X = (h - h_0) - T_0(s - s_0) + \frac{v^2}{2} + gz$$
(3.2)

En terme de puissance et on supposant que le débit massique se conserve, l'equation **??** s'écrit :

$$\dot{E}_X = \dot{m}(h - h_0) - \dot{m}T_0(s - s_0) + \dot{m}\frac{v^2}{2} + \dot{m}gz$$
(3.3)

La variation de l'exergie par unité de masse d'un système fermé évoluant entre l'état 1 et l'état 2 s'écrit :

$$\Delta E_X = (u_2 - u_1) + P_0(V_2 - V_1) - T_0(s_2 - s_1) + \frac{v_2^2 - v_1^2}{2} + g(z_2 - z_1)$$
(3.4)

L'exergie d'un système fermé est toujours positive ou nulle. Elle n'est jamais négative.

La variation de l'exergie d'un système ouvert évoluant entre l'état 1 et l'état 2 en régime permanent s'écrit :

$$\Delta E_X = (h_2 - h_1) - T_0(s_2 - s_1)\frac{v_2^2 - v_1^2}{2} + g(z_2 - z_1)$$
(3.5)

Chaque calcul ou analyse exergétique implique un état de référence du système étudié

dit *état mort* qui indique l'équilibre avec le milieu extérieur, cet état de référence est défini par la température T_0 .

3.6.1 Compresseur $(1 \mapsto 2)$

Le compresseur, symbolisé par le schéma de la figure ??, aspire et comprime la vapeur sortante dans l'évaporateur jusqu'à la pression qui règne dans le condenseur.

FIGURE 3.34 – Schéma symbolisant un compresseur.

Bilan de masse

Le bilan de masse dans le compresseur s'écrit :

$$\dot{m}_1 = \dot{m}_2 = \dot{m}_2$$

$$\rho_1.A_1.V_1 = \rho_2.A_2.V_2 \mapsto \frac{1}{v_1}.A_1.V_1 = \frac{1}{v_2}.A_2.V_2 \mapsto \frac{\dot{V}_1}{v_1} = \frac{\dot{V}_2}{v_2}$$
(3.6)

Bilan énergétique

Le bilan énergétique s'écrit comme suit :

$$\dot{m}h_1 + \dot{W} = \dot{m}h_2 \tag{3.7}$$

Bilan entropique

Le bilan entropique est comme suit :

$$\dot{S}_e - \dot{S}_s + \dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = \Delta \dot{S}_{sys} = 0$$

 $\dot{S}_{g\acute{e}n\acute{e}r\acute{e}e}=\dot{S}_s-\dot{S}_e$

Alors :

$$\dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = \dot{m}s_2 - \dot{m}s_1 = \dot{m}(s_2 - s_1) \tag{3.8}$$

Bilan exergétique -Rendement exergétique-

Le bilan exergétique est comme suit :

$$\dot{E}_{X_e} - \dot{E}_{X_s} - \dot{E}_{X_{det}} = 0$$
$$\dot{E}_{X_{det}} = \dot{E}_{X_e} - \dot{E}_{X_s}$$
$$\dot{E}_{X_{det}} = \dot{W} + \dot{E}_{X_1} - \dot{E}_{X_2}$$

$$\dot{E}_{X_{det}} = \dot{W} - \dot{m}[h_2 - h_1 - T_0(s_2 - s_1)]$$

On sait que $\dot{W} = \dot{m}(h_2 - h_1)$, alors l'exergie détruite est :

$$\dot{E}_{X_{det}} = \dot{m}T_0(s_2 - s_1)] \tag{3.9}$$

3.6.2 Condenseur $(2 \mapsto 3)$

le condenseur est un échangeur de chaleur où le frigorigène se condense (figure ??). Le liquide sortant est à saturation ou légèrement refroidi.

FIGURE 3.35 – Schématisation d'un condenseur

Bilan de masse

Le bilan de masse dans le compresseur s'écrit :

 $\dot{m}_2 = \dot{m}_3 = \dot{m}$

$$\rho_2.A_2.V_2 = \rho_3.A_3.V_3 \mapsto \frac{1}{v_2}.A_2.V_2 = \frac{1}{v_3}.A_3.V_3 \mapsto \frac{\dot{V}_2}{v_2} = \frac{\dot{V}_3}{v_3}$$
(3.10)

Bilan énergétique

Le bilan énergétique de l'évaporateur s'écrit comme suit :

$$\dot{m}h_2 = \dot{Q}_c + \dot{m}h_3 \tag{3.11}$$

où \dot{Q}_c est le rejet de la chaleur du condenseur vers l'environnement.

Bilan entropique

Le bilan entropique s'écrit comme suit :

$$\dot{S}_2 - \dot{S}_3 + \dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = \Delta \dot{S}_{sys} = 0$$
$$\dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = \dot{m}s_3 - \dot{m}s_2 + \frac{\dot{Q}_C}{T_C}$$

Finalement l'entropie générée est :

$$\dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = \dot{m}(s_3 - s_2 + \frac{q_C}{T_C})$$
 (3.12)

Bilan exergétique -Rendement exergétique-

L'exergie détruite est calculée comme suit :

$$\dot{E}_{X_e} - \dot{E}_{X_s} - \dot{E}_{X_{det}} = 0$$
$$\dot{E}_{X_{det}} = \dot{E}_{X_e} - \dot{E}_{X_s}$$
$$\dot{E}_{X_{det}} = (\dot{E}_{X_2} - \dot{E}_{X_3}) - \dot{E}_{X_{Q_c}}$$

Finalement L'exergie détruite est :

$$\dot{E}_{X_{det}} = \dot{m}[h_2 - h_3 - T_0(s_2 - s_3)] - \left[-\dot{Q}_C \left(1 - \frac{T_0}{T_C}\right)\right]$$
(3.13)

La destruction d'exergie peut également être déterminée avec la relation suivante :

$$\dot{E}_{X_{det}} = T_0 \dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = \dot{m}T_0 \left(s_3 - s_2 + \frac{q_C}{T_C}\right)$$
(3.14)

D'où le rendement exergétique du condenseur est :

$$\eta_{ex,cond} = \frac{\dot{E}_{X_{Q_C}}}{\dot{E}_{X_2} - \dot{E}_{X_3}} = \frac{-\dot{Q}_C \left(1 - \frac{T_0}{T_C}\right)}{\dot{m}[h_2 - h_3 - T_0(s_2 - s_3)]} = 1 - \frac{\dot{E}_{X_{det}}}{\dot{E}_{X_2} - \dot{E}_{X_3}}$$
(3.15)

Dans le cas ou le condenseur est refroidi par l'eau (figure ??)

FIGURE 3.36 – Schématisation d'un condenseur refroidi par l'eau.

Le bilan entropique s'écrit :

$$\dot{S}_e - \dot{S}_s + \dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = \Delta \dot{S}_{sys} = 0$$

$$\dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = \dot{S}_s - \dot{S}_e$$

Donc l'entropie générée est :

$$\dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = \dot{m}_r(s_3 - s_2) + \dot{m}_w(s_{w_{out}} - s_{w_{in}})$$
(3.16)

avec :

- \dot{m}_r , \dot{m}_w sont respectivement le débit massique du réfrigérant et de l'eau.
- s₃, s₂ sont respectivement l'entropie du fluide frigorigène à la sortie et à l'entrée du condenseur.
- $s_{w_{out}}, s_{w_{in}}$ sont respectivement l'entropie de l'eau à la sortie et à l'entrée du condenseur.

L'exergie détruite s'écrit :

$$\dot{E}_{X_{det}} = T_0 \dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = T_0 \left[\dot{m}_r \left(s_3 - s_2 \right) + \dot{m}_w (s_{w_{out}} - s_{w_{in}}) \right]$$
(3.17)

3.6.3 Détendeur $(3 \mapsto 4)$

Le schéma symbolisant le détendeur est représenté sur la figure ??.

FIGURE 3.37 – Schématisation d'un détendeur.

Bilan énergétique

Le bilan énergétique s'écrit comme suit :

$$\dot{m}h_3 = \dot{m}h_4 \tag{3.18}$$

Bilan entropique

Le bilan entropique s'écrit comme suit :

$$\dot{S}_3 - \dot{S}_4 + \dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = \Delta \dot{S}_{sys} = 0$$
$$\dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = \dot{m}s_4 - \dot{m}s_3$$

Finalement l'entropie générée est :

$$\dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = \dot{m}(s_4 - s_3) \tag{3.19}$$

Le bilan exergétique est :

 $\dot{E}_{X_{de}}$

$$\dot{E}_{X_e} - \dot{E}_{X_s} - \dot{E}_{X_{det}} = 0$$
$$\dot{E}_{X_{det}} = \dot{E}_{X_e} - \dot{E}_{X_s}$$
$$\dot{E}_{X_3} - \dot{E}_{X_4} = T_0 \dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = \dot{m} \cdot T_0 (s_4 - s_3)$$

S. ZOUAOUI
Finalement le rendement exergétique s'écrit comme suit :

$$\eta_{ex,det} = 1 - \frac{\dot{E}_{X_{det}}}{\dot{E}_{X_3} - \dot{E}_{X_4}} \tag{3.20}$$

3.6.4 Évaporateur $(4 \mapsto 1)$

Dans cet échangeur le frigorigène se vaporise. La vapeur sortante peut être saturante ou plus souvent légèrement surchauffée. L'évaporation est effectuée à pression constante (si les pertes de pression sont négligées) et donc à température constante pour les fluides purs.

FIGURE 3.38 – Schématisation d'un évaporateur.

Bilan énergétique

Le bilan énergétique s'écrit comme suit(voir figure ??).

$$\dot{m}h_4 + \dot{Q_F} = \dot{m}h_1 \tag{3.21}$$

Bilan entropique

Le bilan entropique s'écrit comme suit :

$$S_4 - S_1 + S_{g\acute{e}n\acute{e}r\acute{e}e} = \Delta S_{sys} = 0$$
$$\dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = \dot{m}s_1 - \dot{m}s_4 - \frac{\dot{Q}_F}{T_F}$$

Finalement l'entropie générée est :

$$\dot{S}_{g\acute{e}n\acute{e}r\acute{e}e} = \dot{m}(s_1 - s_4 - \frac{q_F}{T_F}) \tag{3.22}$$

S. ZOUAOUI

Où q_F est la chaleur massique prise de l'environnement à T_F .

Bilan exergétique -Rendement exergétique-

Le bilan exergétique est :

$$\dot{E}_{X_e} - \dot{E}_{X_s} - \dot{E}_{X_{det}} = 0$$
$$\dot{E}_{X_{det}} = \dot{E}_{X_e} - \dot{E}_{X_s}$$
$$\dot{E}_{X_{det}} = \dot{E}_{X_4} - \dot{E}_{X_1} - \dot{E}_{X_{Q_F}}$$

Finalement L'exergie détruite est :

$$\dot{E}_{X_{det}} = \dot{m}[h_4 - h_1 - T_0(s_4 - s_1)] - \left[-\dot{Q}_F\left(1 - \frac{T_0}{T_F}\right)\right]$$
(3.23)

Le rendement exergétique s'écrit comme suit :

$$\eta_{ex,evap} = \frac{\dot{E}_{X_{Q_F}}}{\dot{E}_{X_4} - \dot{E}_{X_1}} = \frac{-\dot{Q}_F \left(1 - \frac{T_0}{T_F}\right)}{\dot{m}[h_4 - h_1 - T_0(s_4 - s_1)]} = 1 - \frac{\dot{E}_{X_{det}}}{\dot{E}_{X_4} - \dot{E}_{X_1}}$$
(3.24)

Chapitre 4

Autre types de machines frigorifiques

Dans ce chapitre nous allons décrire deux autre types de machines frigorifiques. Le système de réfrigération à absorption est décrit, suivi de cycle frigorifique à gaz (air).

4.1 Principe de fonctionnement d'une machine frigorifique à absorption

Dans le cycle de réfrigération à compression de vapeur, le passage de la basse pression à la haute pression est réalisé à l'aide d'un compresseur. Dans le cycle de **réfrigération à absorption**, le compresseur est remplacé par un ensemble d'éléments dont le fonctionnement est basé sur les propriétés d'absorption et d'adsorption d'un fluide frigorigène mis en présence d'un liquide solvant. Le mélange le plus utilisé est l'ammoniac comme frigorigène et l'eau comme solvant.

Le cycle de réfrigération à absorption d'ammoniac a été breveté en 1859 par **Ferdinand Carré**. Très rapidement, des machines de réfrigération basées sur ce principe ont été construites pour la production de glaces et la conservation des produits alimentaires. Le cycle de réfrigération à absorption d'ammoniac est représenté sur la figure **??**.

FIGURE 4.1 – Système de réfrigération à absorption d'ammoniac.

4.1.1 Description d'une machine frigorifique à absorption

Les éléments qui remplacent le compresseur sont :

- ✤ L'absorbeur : la vapeur à basse pression du fluide frigorigène (NH₃) provenant de l'évaporateur est absorbée par la solution pauvre en ammoniac à basse pression qui provient de détendeur de solution. Une réaction chimique exothermique se produit au cours de cette évolution. La chaleur libérée doit être évacuée par un système de refroidissement externe, car la quantité d'ammoniac dissout dans l'eau est inversement proportionnelle à la température du mélange.
- ✤ La pompe : elle augmente la pression de la solution riche en ammoniac à basse pression qui provient de l'absorbeur.

- ✤ Le bouilleur ou le générateur : la solution riche en ammoniac à haute pression qui a été chauffée dans le réchauffeur (régénérateur) est désorbée, c'est à dire séparée en vapeur à haute pression du fluide frigorigène et en solution pauvre en ammoniac à haute pression. Cette évolution consomme de la chaleur qui est appelée la "chaleur de désorption" (réaction endothermique). La source de chaleur dans la figure ?? est l'énergie solaire. La chaleur pourrait aussi provenir d'une source géothermique, d'une installation de cogénération ou d'une chaudière à gaz naturel.
- ✤ Le séparateur (rectificateur) : il sépare la vapeur riche en ammoniac à haute pression de l'eau. La vapeur d'ammoniac est dirigée vers le condenseur, tandis que l'eau est renvoyée au bouilleur.
- ✤ Le détendeur du réchauffeur : il diminue la pression de la solution pauvre en ammoniac à haute pression qui provient du bouilleur après avoir traversé le réchauffeur.
- ✤ Le réchauffeur (régénérateur) : il permet de réchauffer la solution riche en ammoniac à haute pression prevenant de la pompe et de refroidir la solution pauvre en ammoniac à haute pression provenant du bouilleur.

4.1.2 Coefficient de performance d'une machine frigorifique à absorption

Le coefficient de performance du système de réfrigération à absorption est défini comme :

$$COP = \frac{Q_f}{Q_{gen} + W_{pompe}} \cong \frac{Q_f}{Q_{gen}}$$
(4.1)

Le **COP** maximal est obtenu lorsque tout le cycle est réversible. Dans ce cas, la chaleur provenant de la source Q_{gen} est transmise à une machine de Carnot. Cette dernière produit un travail $W = \eta_{th,rev}.Q_{gen}$ pour allimenter un réfrigérateur de Carnot qui extrait de la chaleur du milieu réfrigéré (voir la figure ??).

FIGURE 4.2 – Détermination du COP maximal d'un système de réfrigération à absorption.

Alors $Q_f = W.COP_{R,rev} = \eta_{th,rev}.Q_{gen}.COP_{R,rev}$, et le **COP** théorique du système de réfrigération à absorption devient :

$$\operatorname{COP}_{rev,absorption} = \frac{Q_f}{Q_{gen} + W_{pompe}} = \eta_{th,rev} \cdot Q_{gen} \cdot \operatorname{COP}_{R,rev} = \left(1 - \frac{T_0}{T_s}\right) \left(\frac{T_f}{T_0 - T_f}\right)$$
(4.2)

où T_f , T_0 et T_s sont respectivement les températures absolues du milieu réfrigéré, du milieu extérieur et de la source de chaleur.

Remarque

Tout système de réfrigération à absorption alimenté par une source de chaleur à la température T_s , qui extrait de la chaleur d'un milieu réfrigéré à la température T_f dans un milieu extérieur à la température T_0 a un COP inférieur à celui qui est donné dans

l'expression ??. Par exemple, si la température de la source de chaleur est $T_s = 120^{\circ}C$, celle du milieu réfrigéré est $T_f = -10^{\circ}C$, alors le COP théorique maximal du système de réfrigération à absorption est égale à **1**,**8**.

le COP des systèmes réels de réfrigération à absorption est habituellement inférieur à 1.

4.1.3 Avantages des machines à absorption

- ✓ Les machines à absorption sont fiables. En effet, elles ne comportent pas de parties mécaniques en mouvement à l'exception des pompes qui sont installées en double (installation industrielle). On ne rencontre pas non plus de problèmes dûs aux huiles de lubrification.
- ✓ Elles sont très silencieuses et pratiquement inusables. Tout le circuit fluidique étant hermétique, les opérations d'entretien et les dépannages sont limités.
- ✓ Les petites installations "domestiques" ne sont pas dépendantes du courant électrique et acceptent de fonctionner malgré les cahots.
- ✓ Le fonctionnement d'une installation industrielle peut-être particulièrement économique si la chaleur à fournir au bouilleur est gratuite ou peu coûteuse (récupération d'énergie, sources chaudes, gaz d'échappement, etc...).

4.1.4 Inconvénients des machines à absorption

- A rendement fonctionnel égal, la consommation d'énergie est plus élevée pour ces machines que pour celles à compression.
- En cas de fuite de l'agrégat sur une installation "domestique" (ce qui est rare), la réparation est quasiment impossible.
- Ces machines ont un coût plus élevé et un système plus complexe et encombrant.
 Elle nécessitent plus d'entretien.

4.2 Cycle frigorifique à air

Le cycle de Carnot et le cycle de Carnot inverse sont identiques. Seul le sens, dans lequel le cycle est parcouru, est inversé. De même, en renversant le sens d'un cycle de puissance idéal (Cycle de **Rankine**) on obtient le cycle de réfrigération à compression de vapeur idéal.

Dans la présente section nous verrons le cycle de **Brayton** inverse ou le **cycle de Réfrigération à gaz** (air)

4.2.1 Description du cycle de réfrigération à gaz

Soit le cycle de réfrigération à gaz représenté sur la figure ??. Le milieu extérieur chaud se trouve à une température T_0 et le milieu intérieur réfrigéré froid à une température T_L . Le gaz est comprimé à haute pression et à haute température (évolution $1 \mapsto 2$). Il passe dans un échangeur de chaleur où il est refroidi à pression constante jusqu'à la température T_3 en cédant de la chaleur au milieu extérieur (évolution $2 \mapsto 3$). Il se détend dans une turbine isentropique, et sa température chute à T_4 (évolution $3 \mapsto 4$). Il traverse ensuite un autre échangeur qui absorbe de la chaleur provenant du milieu réfrigéré (évolution $4 \mapsto 1$). Il sort de l'échangeur à la température T_1 , puis le cycle recommence.

Remarque

Les évolutions du cycle de réfrigération à gaz idéal sont réversibles intérieurement. Dans d'un cycle de réfrigération à gaz réel, la compression et la détente du gaz ne sont pas isentropiques et la température T_3 demeure supérieure à T_0 .

4.2.2 Coefficient de performance d'un cycle de réfrigération à gaz

Dans le diagramme T - S de la figure ??, l'aire sous la courbe $4 \mapsto 1$ représente la chaleur extraite du milieu réfrigéré, et l'aire circonscrite par le parcours $1 \mapsto 2 \mapsto 3 \mapsto 4 \mapsto 1$ représente le travail consommé. Le rapport de ces deux aires est le coefficient de performance du cycle, soit

FIGURE 4.3 – Cycle de réfrigération à gaz idéal.

$$COP_{R} = \frac{q_{f}}{W_{net,in}} = \frac{q_{f}}{W_{comp,in} + W_{turb,out}}$$

$$q_{f} = h_{1} - h_{4}$$

$$W_{comp,in} = h_{2} - h_{1}$$

$$W_{turb,out} = h_{3} - h_{4}$$

$$(4.3)$$

4.2.3 Comparaison entre le cycle de réfrigération à gaz et le cycle de Carnot inverse

Le cycle de réfrigération à gaz s'écarte du cycle de Carnot inverse, car les évolutions de transmission de chaleur ne sont pas isothermes. Par conséquent, le coefficient de performance du cycle de réfrigération à gaz est inférieur à celui de Carnot inverse. D'après la figure ?? on voit clairement que le cycle de Carnot inverse ne consomme qu'une fraction du travail du cycle de réfrigération à gaz (l'aire du rectangle 1 - A - 3 - B - 1) et extrait une quantité additionnelle de chaleur du milieu réfrigéré (l'aire du triangle B - 1 - 4 - B).

avec :

FIGURE 4.4 – Comparaison entre le cycle de réfrigération à gaz idéal et le cycle de Carnot inverse.

Exemple d'application : Cycle de réfrigération à gaz idéal

Soit un cycle idéal de réfrigération à air. Le milieu réfrigéré doit être maintenu à $-18^{\circ}C$, alors que le milieu extérieur dans lequel la chaleur est évacuée se trouve à 27°. Le taux de compression est de 4.

- 1 Représenter le cycle sur un diagramme T s.
- 2 Déterminer :
 - a) Les températures minimale et maximale du cycle.
 - b) Le coefficient de performance.
 - c) La puissance frigorifique si le débit massique de l'air dans le cycle est de $0.045 \, kg.s^{-1}$.

Solution

Il s'agit d'un cycle idéal de réfrigération à air.

Hypothèses :

- 1. Le régime d'écoulement est permanent.
- 2. L'air est considéré comme un gaz parfait.
- 3. La variation des énergies cinétique et potentielle est négligeable.

Analyse :

1 Le diagramme T - s du cycle de réfrigération est illustré à la figure ??. Par conséquent, la turbine et le compresseur sont isentropiques, et l'air est refroidi à la température du milieu extérieur avant d'être admis dans la turbine.

FIGURE 4.5 – Cycle idéal de réfrigération à air .

2-a) Les températures minimale et maximale du cycle sont déterminées à l'aide des relations isentropique pour la compression et la détente des gaz parfaits. A l'aide des tables de l'annexe ?? , on obtient :

$$T_1 = 255K \longrightarrow h_1 = 255.05 \, kJ/kg \quad et \quad P_{r1} = 0.7867$$

$$P_{r2} = \frac{P_2}{P_1} P_{r1} = 4.0.7867 = 3,1468 \longrightarrow \begin{cases} h_2 = 379,7kJ/kg \\ T_2 = 379,0K \end{cases}$$
$$T_3 = 300K \longrightarrow h_3 = 300,19\,kJ/kg \quad et \quad P_{r3} = 1,386 \end{cases}$$

$$P_{r4} = \frac{P_4}{P_3} P_{r3} = 0,25.1.386 = 0,3465 \longrightarrow \begin{cases} h_4 = 201,6kJ/kg \\ T_4 = 201,6K \end{cases}$$

La température minimale est $T_4 = 201, 6 K$ et la température maximale est $T_2 = 379 K$

2-b) Le coefficient de performance du cycle de réfrigération à air idéal est :

$$\mathrm{COP}_R = \frac{q_f}{W_{net,in}} = \frac{q_f}{W_{comp,in} + W_{turb,out}}$$

où :

$$q_f = h_1 - h_4 = 255, 05 - 201, 6 = 53, 45 \, Kj/kg$$
$$W_{turb,out} = h_3 - h_4 = 300, 19 - 201, 6 = 98, 59 \, Kj/kg$$
$$W_{comp,in} = h_2 - h_1 = 397, 7 - 255, 05 = 124, 65 \, Kj/kg$$

alors :

$$COP_R = \frac{53, 45}{124, 65 - 98, 59} = 2,05$$

2-c) La puissance frigorifique est :

$$\dot{Q}_f = \dot{m}(q_f) = 0,045.53,45 = 2,4\,kW$$

Remarque : Dans les mêmes conditions le rendement du cycle idéal de réfrigération à compression de vapeur serait supérieur à 3

4.2.4 Applications du cycle de réfrigération à gaz

En dépit du fait que leurs coefficients de performance soient relativement faibles, les cycles de réfrigération à gaz présentent deux avantages :

- 1. Ils font intervenir des composants simples et légers. Cela permet de les utiliser comme systèmes de climatisation dans les avions.
- Ils sont utilisés dans diverses applications cryogéniques et pour la liquéfaction des gaz, car ils peuvent recourir à la régénération.

a) Système de climatisation pour les avions

Le système de climatisation pour les avions fonctionnant suivant un cycle à air ouvert est illustré dans la figure ??. L'air atmosphérique est comprimé dans un compresseur (évolution 1-2). En traversant l'échangeur de chaleur, il est refroidi par l'air extérieur (évolution 2-3). Il se détend ensuite dans la turbine (évolution 3-4) et l'air froid émergeant est introduit dans l'avion.

FIGURE 4.6 – Système de la climatisation pour avion fonctionnant selon un cycle ouvert.

b) Cycle de réfrigération à gaz avec régénération

Un cycle de réfrigération à gaz avec régénération est représenté sur la figure ??. On remarque que sans régénération, la plus basse température à l'entrée de la turbine est de T_0 (température du milieu extérieur ou de tout autre milieu à basse température). Avec régénération, la température du gaz pressurisé est abaissée à T_4 avant que celuici se détende dans la turbine. L'abaissement de la température à l'entrée de la turbine engendre automatiquement l'abaissement de la température à la sortie qui est la température minimale du cycle. En répétant l'évolution, on peut ainsi atteindre de très basses températures.

FIGURE 4.7 – Cycle de régénération à gaz avec régénération.

4.3 Machine frigorifique à éjection

Les vapeurs du cycle frigorifique sont aspirées mécaniquement par un éjecteur (figure ??). Celui-ci fonctionne grâce à l'énergie cinétique de la *vapeur motrice* (généralement de même nature que la *vapeur de frigorigène*) qui, par l'injecteur (I), pénètre dans la partie convergente, (II), de l'éjecteur. La compression du mélange des vapeurs motrices et de frigorigène s'effectue dans la partie divergente, (III), de l'éjecteur où l'énergie cinétique du flux de vapeur se transforme en énergie de pression. La *vapeur motrice* doit évidemment provenir d'une chaudière. Ce type de système consomme donc de l'énergie thermique et fait partie de la catégorie des systèmes au moins **trithermes**.

4.3.1 Machine frigorifique à CO2 utilisant un éjecteur comme détendeur

Bien qu'il puisse être utilisé avec d'autres frigorigènes, c'est avec l'eau que le système frigorifique à éjection entra en scène en 1908. L'abaissement de température de l'eau, qui se vaporise sous basse pression, est obtenue en aspirant la vapeur formée au moyen d'un éjecteur, ou trompe, alimenté par un jet de vapeur vive provenant d'une chaudière. L'éjec-

FIGURE 4.8 – Système à éjection.

teur est une tuyère convergente l'accroissement de la vitesse du jet diminue la pression ce qui permet l'aspiration voulue –puis lentement divergente- l'augmentation progressive de la section offerte à la vapeur ralentit sa vitesse et la pression remonte.

Relativement peu d'informations sont disponibles sur l'utilisation des éjecteurs comme dispositifs de détente dans un cycle de réfrigération à compression de vapeur. Le cycle d'une machine frigorifique utilisant un éjecteur comme détendeur (voir figure ??) a été proposé pour la première fois par **Kornhauser** (1990) pour réduire les pertes du processus isenthalpique de détente dans un cycle de base. **Kornhauser** fait une analyse théorique des performances d'un cycle de réfrigération utilisant un éjecteur comme détendeur et fonctionnant au R - 12, il constate une amélioration du COP de plus de 21% par rapport à celui d'un cycle conventionnel et ce pour une température de l'évaporateur de 15°C et une température du refroidisseur de 30°C.

Le cycle transcritique de fonctionnement d'une machine frigorifique à CO_2 utilisant un éjecteur comme détendeur, est représenté dans un diagramme P - h (figure ??). Dans ce cycle, l'éjecteur est employé pour récupérer une partie de l'énergie cinétique du processus

FIGURE 4.9 – Principe d'une machine frigorifique à CO2 utilisant un éjecteur comme détendeur.

de détente pour augmenter la pression d'aspiration au niveau du compresseur.

FIGURE 4.10 – cycle de fonctionnement d'une machine frigorifique à CO_2 utilisant un éjecteur comme détendeur.

Daqing Li et E.A. Groll (2004) ont constaté que l'utilisation d'un éjecteur comme détendeur améliore le coefficient de performance (COP) de plus de 16% comparé à celui du cycle de base.

Jian-qiang Deng et Pei-xue Jiang (2006) ont fait une comparaison des COP de trois cycles de réfrigération qui sont respectivement : le cycle de réfrigération transcritique au CO_2 utilisant un éjecteur comme détendeur, le cycle de réfrigération conventionnel à compression mécanique de vapeur et le cycle de réfrigération à un échangeur de chaleur interne. Ils ont constaté que celui du système de réfrigération transcritique au CO_2 muni d'un détendeur à éjecteur est supérieur à ceux des deux autres cycles et que l'éjecteur améliore le COP de plus de 18.6% par rapport au système avec échangeur de chaleur interne et de plus de 22.0% par rapport au système conventionnel.

Conclusion

Depuis que **Lorentzen** a déclenché la renaissance du CO_2 comme frigorigène, les techniques utilisant le CO_2 en tant que frigorigène sont très attractives du fait de l'innocuité de celui-ci vis-à-vis de l'environnement et de la sécurité d'utilisation qu'il engendre. Cependant, un pas décisif reste à faire pour permettre la production en masse des composants qu'il requiert afin que ces techniques soient compétitives en termes de coûts avec celles utilisées traditionnellement dans le froid, le conditionnement d'air et les pompes à chaleur. Beaucoup d'études de développement ont été effectuées dans ce domaine, pour améliorer les performances du cycle transcritique à CO_2 dans les systèmes de conditionnement d'air et pompe à chaleur.

Chapitre 5

Pompes à Chaleur

5.1 Généralités

Une pompe à chaleur (PAC) est un appareil qui prend de la chaleur à un corps froid pour la fournir à un corps plus chaud, moyennant une certaine dépense d'énergie mécanique dans les machines à compression et thermique dans les machines à absorption. Le principe des PAC et des machines frigorifiques est identique. Dans les PAC on s'intéresse à la source chaude alors que dans les machines frigorifiques on s'intéresse plutôt à la source froide.

Ces machines connaissent une certaine notoriété depuis les années 50 et le contexte de pénurie d'énergie, surtout aprés la crise qui a ébranlé le monde industrialisé vers le début des années 70, les fait apparaître comme des solutions particulièrement rentables. Par exemple pour une machine dont le COP est de 4 fournit 4 kW d'énergie calorifique en payant que 1 kW d'énergie mécanique, ce qui est assurément bien séduisant. Mais ces techniques ne sont pas simples à bien mettre en œuvre et bien souvent le coût de l'installation et de l'investissement en soi même à long terme désavouait leur emploi.

5.2 Principe des pompes à chaleur

Dans le cas d'une PAC, la source chaude correspond au corps ou à l'enceinte à chauffer, par exemple un radiateur de chauffage central de température T_1 , la chaleur nécessaire au chauffage sera pompée d'une source froide qui peut être l'eau de mer, d'un fleuve ou d'un lac ou encore de l'atmosphère se trouvant à une température $T_2 < T_1$ selon le schéma de la figure ??. Bien entendu la chaleur puisée de la source froide est gratuite et le fluide sort de l'appareil plus froid qu'il n'y est entré.

FIGURE 5.1 – Pompe à chaleur à compression de vapeur mono-étagé .

Le fonctionnement de la PAC est exactement le même que celui d'une machine frigorifique :

Dans l'évaporateur, le fluide froid (eau de mer par exemple) remplace la saumure (ou l'enceinte à réfrigérer) et cède de la chaleur au fluide frigorigène qui s'évapore. Dans le

condenseur, le fluide frigorigène se liquéfie et dégage de la chaleur qui sera récupérée par le fluide de la source chaude, par exemple l'eau qui circule dans les radiateurs.

Remarque :

Selon les fluides des sources, on classe les PAC comme suit : Les pompes "air-air", les pompes "air-eau", les pompes "eau-eau".

5.3 Performance d'une installation de PAC

Pour une pompe à chaleur (PAC) le coefficient de performance (COP) théorique (Carnot) pour une machine réversible est donné par la relation :

$$COP = \epsilon_c = \frac{Q_c}{W} = \frac{T_c}{T_c - T_f}$$
(5.1)

où :

- Q_c : chaleur cédée par le système à la source chaude,
- --W: travail net fourni au système via le compresseur,
- T_f et T_c : respectivement, températures du fluide dans l'évaporateur et dans le condenseur.

En pratique il existe plusieurs causes d'origine mécanique (frottement, compression polytropique) et thermique (pertes dans les échangeurs) qui font que le COP réel d'une PAC est de moitie environ de la valeur du COP théorique donné plus haut, c'est à dire :

$$\epsilon_{c\,r\acute{e}el} \simeq \frac{Q_c}{\mid W \mid} \tag{5.2}$$

5.4 Application des PAC

L'utilisation des PAC couvre les domaines suivant :

- 1- le chauffage et le rafraichissement de l'atmosphère de locaux de travail et d'habitation (climatisation).
- 2- la récupération d'énergie dans les usines où existent des besoins simultanés de chaud et de froid en quantités comparables (industries chimiques et agroalimentaires).

- 3- réglage de température et de l'humidité ambiante dans les installations industrielles (conditionnement).
- 4- le chauffage de l'eau et d'autres liquides.
- 5- la concentration, l'évaporation ou la distribution de liquide.
- 6- le séchage des produits thermos ensibles ou à migration lente d'humidité (température limites $130^\circ C)$

Dans ce qui suit, on étudiera quelques unes de ces applications :

5.4.1 Conditionnement des locaux

Thermopompe : Utilisation de la PAC au chauffage

Le schéma suivant (figure ??) illustre une réalisation courante de l'utilisation de la PAC pour le chauffage fonctionnant totalement avec de l'air (cycle mono étagé à une seule phase) selon le cycle de Joule

FIGURE 5.2 – Thermopompe.

Le compresseur aspire l'air du local (source chaude) et le comprime de façon isotherme de 1 à 2 *bars*. L'air chauffé au cours de cette compression traverse d'abord un échangeur

à contre-courant dans lequel il réchauffe au passage l'air qui vient de l'extérieur (source froide) pour remplacer l'air aspiré par le compresseur (renouvellement). Ensuite il sera détendu dans un cylindre muni d'un piston (turbine ou détendeur) en fournissant un travail avant d'être évacué à l'extérieur à une pression de 1 *bar*.

Frigopompe : Utilisation de la PAC pour le rafraîchissement

On peut utiliser le même équipement que l'application précédente (Thermopompe) pour la rafraîchissement des locaux à partir d'un environnement extérieur chaud. Dans ce cas il suffit d'envoyer directement dans le local l'air frais sortant de la turbine (voir figure??)

FIGURE 5.3 – Frigopompe.

Thermo-frigo-pompe : PAC permettant le chauffage et le rafraîchissement

A l'opposé des installations précédentes, ce genre d'installation utilise comme fluide frigorigène un fluide capable de se condenser et de se vaporiser au cours de son évolution (exemple R-134a). Donc ce sont des installations à deux phases mono-étagé, le plus souvent à compression qui permettent le chauffage et rafraîchissement par inversion et cela par un simple et judicieux jeu de vannes. Parmi les multiples applications de cette PAC, on trouve

le conditionnement de locaux de petite et moyenne importance. La figure ?? montre le schéma qui illustre le circuit d'un conditionneur domestique.

FIGURE 5.4 – Themo-frigo-pompe.

Le fonctionnement de cette PAC est :

- <u>1- Mode chauffage (circuit rouge)</u>: Après sa compression dans le compresseur
 C, le fluide frigorigène traverse le condenseur A placé dans le local à chauffer où il cède une partie de la chaleur (gagnée lors de sa compression) en se condensant. Ensuite, il traverse la valve d'expansion isenthalpique R pour se rendre dans l'évaporateur B où il se vaporise en empruntant de la chaleur du milieu extérieur qui baigne l'évaporateur. Puis la vapeur est réaspirée par le compresseur et ainsi de suite. Par ce procédé on a "pompé" la chaleur de l'air extérieur, qui se refroidit, vers l'atmosphère du local qui se réchauffe. Le circuit du fluide frigorigène est : C-3-A-6-R-8-B-2-C. Donc : les vannes 3,6,8,2 sont ouvertes et les vannes 4,5,7,1 sont fermées.

chaleur s'effectuera de l'atmosphère du local, qui se refroidit, à l'air extérieur qui se réchauffe. Le fluide frigorigène suivra dans ce cas l'évolution suivante : C-1-B-7-R-5-A-4-C . Donc : les vannes 1,7,5,4 sont ouvertes et les vannes 2,8,6,3 sont fermées.

Remarques :

- Ces vannes permettent uniquement le passage et la retenue du fluide et aucunement son laminage qui est plutôt le rôle de la vanne R.
- 2- Le rôle des ventilateurs $\mathbf{V_1}$ et $\mathbf{V_2}$ est d'accentuer les échanges thermiques (convection forcée)

5.4.2 Chauffage de liquides

Les PAC peuvent être utilisées pour le chauffage de toutes sortes de liquides qui vont jouer ici le rôle de la source chaude. Le schéma de la figure **??** représente une disposition pour la production d'eau chaude sanitaire.

FIGURE 5.5 – Production d'eau chaude sanitaire à l'aide d'une PAC.

5.4.3 Chauffage et refroidissement simultanés de liquides

Dans certaines industries (chimiques et agroalimentaires), il existe des besoins simultanés et en quantités comparables de chaud (distillation, évaporation, concentration, dessiccation) et de froid (réfrigération, lyophilisation), dans lesquelles les PAC représentent une alternative de choix en disposant convenablement les échangeurs de chaleur(évaporateur et condenseur) par rapport aux sources chaudes et froides (figure **??**).

FIGURE 5.6 – Chauffage et refroidissement simultané à l'aide d'une PAC.

Le schéma de la figure ?? illustre une réalisation ingénieuse et fort intéressante de ce genre d'utilisation de la PAC pour la concentration des liquides (jus de fruits, produits laitiers,...etc). Le liquide à concentrer arrive dans l'évaporateur, absorbe une certaine quantité de chaleur et s'évapore. La vapeur engendrée est aspirée par le compresseur puis la refoule à l'état de surchauffe dans le corps de chauffe de l'évaporateur. Cette vapeur se condense en cédant sa chaleur de vaporisation nécessaire pour entretenir l'ébullition et traverse ensuite l'échangeur \mathbf{B}_2 à l'état de condensat, du moins à l'état de solution appauvrie. Au même moment, la solution concentrée chauffée quitte l'évaporateur en \mathbf{C} et cède dans l'échangeur \mathbf{B}_1 passe dans l'échangeur \mathbf{B}_2 où il absorbe d'avantage la chaleur du condensat sortant du corps de chauffe de l'évaporateur. Il est à noter que cet évaporateur joue un double rôle d'évaporateur et de condenseur.

FIGURE 5.7 - PAC pour la concentration des liquides.

5.4.4 Utilisation d'une PAC au séchage continu convectif à air chaud

Pour le séchage de certains produits thermosensibles (qui craignent la haute température), on peut envisager de remplacer le calorifère, qui sert à réchauffer l'air frais admis dans le séchoir, par une PAC avec économie notable d'énergie (figure ??). La chaleur nécessaire au séchage est puisée directement de l'air vicié. La recirculation dans ce cas de l'air refoulé n'est valable (rentable) que si la température de l'air refoulé est supérieure à celle de l'air d'admission.

FIGURE 5.8 - PAC pour la concentration des liquides.

5.5 Vanne d'inversion du cycle

La vanne d'inversion du cycle, appelée aussi vanne à quatre voies, contient un tiroir mobile solidaire de deux pistons pilotés (figure ??). Sous l'effet d'une pression agissant sur le piston, le tiroir mobile se déplace horizontalement et inverse le sens de passage du fluide dans les échangeurs (évaporateur et condenseur). Le refoulement du compresseur est toujours raccordé du côté ou il n'y a qu'un seul piquage. L'aspiration du compresseur est toujours sur la voie du milieu du côté des trois piquages. Le sens de circulation du fluide est alors déterminé par une électrovanne qui pilote le déplacement du tiroir mobile, par l'intermédiaire de trois capillaires. C'est la différence de pression entre **HP** et **BP** qui permet la manœuvre du tiroir.

FIGURE 5.9 – Vanne à quatre voies.

5.5.1 Fonctionnement d'une PAC réversible

La vanne d'inversion de cycle est utilisée dans les pompes à chaleur réversibles comme le montre les figures ?? et ??.

FIGURE 5.10 – Schéma de fonctionnement d'une PAC réversible en mode froid.

FIGURE 5.11 – Schéma de fonctionnement d'une PAC réversible en mode chaud.

5.5.2 Dégivrage par inversion de cycle

Pendant le dégivrage, on inverse les rôles de l'évaporateur et du condenseur d'où le nom de dégivrage par inversion de cycle. L'inversion du cycle est obtenue par l'intermédiaire d'une vanne à 4 voies comme l'illustre les figures ?? et ??. Le dégivrage d'un évaporateur s'effectue en envoyant les vapeurs chaudes du refoulement non plus dans le condenseur mais dans l'évaporateur.

FIGURE 5.12 – Dégivrage par inversion du cycle -Position réfrigération-.

FIGURE 5.13 – Dégivrage par inversion du cycle -Position réfrigération-.

5.6 Différents types de pompes à chaleur

La réduction de la consommation de l'énergie et l'amélioration des performances des pompes à chaleur sont deux facteurs qui ont conduit à trouver des solutions nouvelles.

Le développement des technologies de chauffage domestique par énergies renouvelables intégrant les pompes à chaleur a fait l'objet de plusieurs travaux ce qui a permis de les classifier en différents types selon la source d'énergie utilisée. On peut citer :

5.6.1 Pompe à chaleur solaire

La figure ?? montre le principe de fonctionnement et les composants principaux d'une pompe à chaleur solaire.

FIGURE 5.14 – Pompe à chaleur solaire.

Il existe deux grandes filières pour produire du chaud ou du froid à partir de l'énergie solaire :

- La filière photovoltaïque (PV) : utilise un système frigorifique à compression mécanique de vapeur couplé à des capteurs PV.
- La filière thermique : utilise un système à compression thermique de vapeur couplé à des capteurs thermiques.

5.6.2 Pompe à chaleur géothermique

La pompe à chaleur géothermique utilise de l'énergie thermique des couches profondes de l'écorce terrestre. En été, la température du sol augmente de 2 à 3 °C par 100 m de profondeur. Le principe est de récupérer la chaleur de la terre avec un forage ou un réseau de tubes. Il existe principalement deux types de PAC géothermique (figure **??**) :

FIGURE 5.15 – Pompe à chaleur géothermique.

5.6.3 Pompe à chaleur géothermique horizontale :

La PAC géothermique avec forage horizontal se compose d'un capteur de sol, ce sont des tubes de polyéthylène ou de cuivre gainés de polyéthylène en général. Le capteur est souvent constitué d'un circuit d'eau glycolée enterré en moyenne à soixante-dix centimètres de profondeur et il est en général sous un jardin. La surface est deux fois plus importante que la surface de la maison.

5.6.4 Pompe à chaleur géothermique verticale "géosondes"

La PAC géothermique avec forage vertical nécessite de creuser un trou de 75 à 100 mètres dans le jardin pour insérer des tubes. Le tube de polyéthylène, en général, formant un U installés dans un forage. Le COP d'une PAC géothermique est entre 4 et 6. Les PAC géothermiques verticales sont coûteuses mais la surface de sol est plus réduite.

Remarque :

D'autres types de pompe à chaleur géothermique existent, selon les capteurs utilisés, tels que la pompe à chaleur géothermique à captage sur nappe phréatique et pompe à chaleur géothermique à captage corbeilles.

Bibliographie

- Theodore L Bergman and Frank P Incropera. Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.
- [2] Jean Desmons. Aide-mémoire de génie climatique-3e édition. Dunod, 2014.
- [3] ASHRAE Fundamentals Handbook. American society of heating, refrigerating and air-conditioning engineers. Inc. : Atlanta, GA, USA, 2009.
- [4] Horst Herr. Génie énergétique et climatique Chauffage, froid, climatisation. Dunod-Tech, 2014.
- [5] W Maake, HJ Eckert, and JL Cauchepin. Le pohlmann-manuel technique du froid. Tome I, Edition PYC, Paris, 1993.
- [6] Francis Meunier and Daniel Mugnier. La climatisation solaire : thermique ou photovoltaïque. Dunod, 2013.
- [7] Francis Meunier, Paul Rivet, and Marie-France Terrier. Froid industriel-2ème édition.
 Dunod, 2010.
- [8] Michael J Moran, Howard N Shapiro, Daisie D Boettner, and Margaret B Bailey. Fundamentals of engineering thermodynamics. John Wiley & Sons, 2010.
- [9] Michael J Moran, Howard N Shapiro, Bruce R Munson, and David P DeWitt. Introduction to thermal systems engineering. *Thermodynamics, Fluid Mechanics, and Heat Transfer, John Wiley & Sons*, 2003.
- [10] BR Munson, DF Young, and TH Okiishi. Fundamentals of fluid mechanics. 4-th edition.-john willey & sons, 2002.
- [11] Hermann Recknagel, Eberhard Sprenger, and Ernst-Rudolf Schramek. Génie climatique. Dunod, 2007.
- [12] WF Stoecker. Growing opportunities for ammonia. In Proceedings of the International Institute of Ammonia Refrigerant, Annual Meeting, Austin, 1989.

- [13] WF Stoecker and JW Jones. Refrigeration and air conditioning, 1982. Mc GrawHill Book Co, New York.
- [14] Chih Wu. Thermodynamics and heat powered cycles : a cognitive engineering approach. Nova Publishers, 2007.

Annexe A

Tables thermodynamiques du Réfrigérant R_{-134a}
Satur	Irated refrigerant-134a—Temperature table												
		<i>Specific</i> m ³ /k	<i>volume,</i> ‹g	Inte	ernal ener kJ/kg	rgy,		Enthalpy kJ/kg	,		<i>Entropy,</i> kJ/kg · K		
Temp <i>T</i> °C	Sat. , press., <i>P_{sat}</i> kPa	Sat. Iiquid, v _f	Sat. vapor, v _g	Sat. liquid, <i>u_f</i>	Evap., <i>u_{fg}</i>	Sat. vapor, <i>u_g</i>	Sat. liquid, <i>h</i> f	Evap., <i>h_{fg}</i>	Sat. vapor, <i>h_g</i>	Sat. liquid, s _f	Evap., <i>s_{fg}</i>	Sat. vapor, <i>s_g</i>	
-40	51.25	0.0007054	0.36081	-0.036	207.40	207.37	0.000	225.86	225.86	0.00000	0.96866	0.96866	
-38	56.86	0.0007083	0.32732	2.475	206.04	208.51	2.515	224.61	227.12	0.01072	0.95511	0.96584	
-36	62.95	0.0007112	0.29751	4.992	204.67	209.66	5.037	223.35	228.39	0.02138	0.94176	0.96315	
-34	69.56	0.0007142	0.27090	7.517	203.29	210.81	7.566	222.09	229.65	0.03199	0.92859	0.96058	
-32	76.71	0.0007172	0.24711	10.05	201.91	211.96	10.10	220.81	230.91	0.04253	0.91560	0.95813	
-30	84.43	0.0007203	0.22580	12.59	200.52	213.11	12.65	219.52	232.17	0.05301	0.90278	0.95579	
-28	92.76	0.0007234	0.20666	15.13	199.12	214.25	15.20	218.22	233.43	0.06344	0.89012	0.95356	
-26	101.73	0.0007265	0.18946	17.69	197.72	215.40	17.76	216.92	234.68	0.07382	0.87762	0.95144	
-24	111.37	0.0007297	0.17395	20.25	196.30	216.55	20.33	215.59	235.92	0.08414	0.86527	0.94941	
-22	121.72	0.0007329	0.15995	22.82	194.88	217.70	22.91	214.26	s237.17	0.09441	0.85307	0.94748	
-20	132.82	0.0007362	0.14729	25.39	193.45	218.84	25.49	212.91	238.41	0.10463	0.84101	0.94564	
-18	144.69	0.0007396	0.13583	27.98	192.01	219.98	28.09	211.55	239.64	0.11481	0.82908	0.94389	
-16	157.38	0.0007430	0.12542	30.57	190.56	221.13	30.69	210.18	240.87	0.12493	0.81729	0.94222	
-14	170.93	0.0007464	0.11597	33.17	189.09	222.27	33.30	208.79	242.09	0.13501	0.80561	0.94063	
-12	185.37	0.0007499	0.10736	35.78	187.62	223.40	35.92	207.38	243.30	0.14504	0.79406	0.93911	
-10	200.74	0.0007535	0.099516	38.40	186.14	224.54	38.55	205.96	244.51	0.15504	0.78263	0.93766	
-8	217.08	0.0007571	0.092352	41.03	184.64	225.67	41.19	204.52	245.72	0.16498	0.77130	0.93629	
-6	234.44	0.0007608	0.085802	43.66	183.13	226.80	43.84	203.07	246.91	0.17489	0.76008	0.93497	
-4	252.85	0.0007646	0.079804	46.31	181.61	227.92	46.50	201.60	248.10	0.18476	0.74896	0.93372	
-2	272.36	0.0007684	0.074304	48.96	180.08	229.04	49.17	200.11	249.28	0.19459	0.73794	0.93253	
0	293.01	0.0007723	0.069255	51.63	178.53	230.16	51.86	198.60	250.45	0.20439	0.72701	0.93139	
2	314.84	0.0007763	0.064612	54.30	176.97	231.27	54.55	197.07	251.61	0.21415	0.71616	0.93031	
4	337.90	0.0007804	0.060338	56.99	175.39	232.38	57.25	195.51	252.77	0.22387	0.70540	0.92927	
6	362.23	0.0007845	0.056398	59.68	173.80	233.48	59.97	193.94	253.91	0.23356	0.69471	0.92828	
8	387.88	0.0007887	0.052762	62.39	172.19	234.58	62.69	192.35	255.04	0.24323	0.68410	0.92733	
10	414.89	0.0007930	0.049403	65.10	170.56	235.67	65.43	190.73	256.16	0.25286	0.67356	0.92641	
12	443.31	0.0007975	0.046295	67.83	168.92	236.75	68.18	189.09	257.27	0.26246	0.66308	0.92554	
14	473.19	0.0008020	0.043417	70.57	167.26	237.83	70.95	187.42	258.37	0.27204	0.65266	0.92470	
16	504.58	0.0008066	0.040748	73.32	165.58	238.90	73.73	185.73	259.46	0.28159	0.64230	0.92389	
18	537.52	0.0008113	0.038271	76.08	163.88	239.96	76.52	184.01	260.53	0.29112	0.63198	0.92310	

Satu	aturated refrigerant-134a—Temperature table (<i>Continued</i>)												
		<i>Specific</i> m ³ /	<i>volume,</i> kg	Inte	ernal ene kJ/kg	rgy,		Enthalpy, kJ/kg	,		<i>Entropy,</i> kJ/kg · K		
Temp <i>T</i> °C	Sat. o., press., <i>P_{sat}</i> kPa	Sat. liquid, a v _f	Sat. vapor, v _g	Sat. liquid, <i>u_f</i>	Evap., <i>u_{fg}</i>	Sat. vapor, <i>u_g</i>	Sat. Iiquid, <i>h_f</i>	Evap., <i>h_{fg}</i>	Sat. vapor, <i>h_g</i>	Sat. liquid, <i>s_f</i>	Evap., <i>s_{fg}</i>	Sat. vapor, <i>s_g</i>	
20	572.07	0.0008161	0.035969	78.86	162.16	241.02	79.32	182.27	261.59	0.30063	0.62172	0.92234	
22	608.27	0.0008210	0.033828	81.64	160.42	242.06	82.14	180.49	262.64	0.31011	0.61149	0.92160	
24	646.18	0.0008261	0.031834	84.44	158.65	243.10	84.98	178.69	263.67	0.31958	0.60130	0.92088	
26	685.84	0.0008313	0.029976	87.26	156.87	244.12	87.83	176.85	264.68	0.32903	0.59115	0.92018	
28	727.31	0.0008366	0.028242	90.09	155.05	245.14	90.69	174.99	265.68	0.33846	0.58102	0.91948	
30	770.64	0.0008421	0.026622	92.93	153.22	246.14	93.58	173.08	266.66	0.34789	0.57091	0.91879	
32	815.89	0.0008478	0.025108	95.79	151.35	247.14	96.48	171.14	267.62	0.35730	0.56082	0.91811	
34	863.11	0.0008536	0.023691	98.66	149.46	248.12	99.40	169.17	268.57	0.36670	0.55074	0.91743	
36	912.35	0.0008595	0.022364	101.55	147.54	249.08	102.33	167.16	269.49	0.37609	0.54066	0.91675	
38	963.68	0.0008657	0.021119	104.45	145.58	250.04	105.29	165.10	270.39	0.38548	0.53058	0.91606	
40	1017.1	0.0008720	0.019952	107.38	143.60	250.97	108.26	163.00	271.27	0.39486	0.52049	0.91536	
42	1072.8	0.0008786	0.018855	110.32	141.58	251.89	111.26	160.86	272.12	0.40425	0.51039	0.91464	
44	1130.7	0.0008854	0.017824	113.28	139.52	252.80	114.28	158.67	272.95	0.41363	0.50027	0.91391	
46	1191.0	0.0008924	0.016853	116.26	137.42	253.68	117.32	156.43	273.75	0.42302	0.49012	0.91315	
48	1253.6	0.0008996	0.015939	119.26	135.29	254.55	120.39	154.14	274.53	0.43242	0.47993	0.91236	
52	1386.2	0.0009150	0.014265	125.33	130.88	256.21	126.59	149.39	275.98	0.45126	0.45941	0.91067	
56	1529.1	0.0009317	0.012771	131.49	126.28	257.77	132.91	144.38	277.30	0.47018	0.43863	0.90880	
60	1682.8	0.0009498	0.011434	137.76	121.46	259.22	139.36	139.10	278.46	0.48920	0.41749	0.90669	
65	1891.0	0.0009750	0.009950	145.77	115.05	260.82	147.62	132.02	279.64	0.51320	0.39039	0.90359	
70	2118.2	0.0010037	0.008642	154.01	108.14	262.15	156.13	124.32	280.46	0.53755	0.36227	0.89982	
75	2365.8	0.0010372	0.007480	162.53	100.60	263.13	164.98	115.85	280.82	0.56241	0.33272	0.89512	
80	2635.3	0.0010772	0.006436	171.40	92.23	263.63	174.24	106.35	280.59	0.58800	0.30111	0.88912	
85	2928.2	0.0011270	0.005486	180.77	82.67	263.44	184.07	95.44	279.51	0.61473	0.26644	0.88117	
90	3246.9	0.0011932	0.004599	190.89	71.29	262.18	194.76	82.35	277.11	0.64336	0.22674	0.87010	
95	3594.1	0.0012933	0.003726	202.40	56.47	258.87	207.05	65.21	272.26	0.67578	0.17711	0.85289	
100	3975.1	0.0015269	0.002630	218.72	29.19	247.91	224.79	33.58	258.37	0.72217	0.08999	0.81215	

Source: Tables A-11 through A-13 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner-Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and Pressures up to 70 MPa," *J. Phys. Chem, Ref. Data*, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at -40°C (and -40°F).

Satura	turated refrigerant-134a—Pressure table											
		<i>Specific</i> m ³	<i>volume,</i> /kg	Inte	r <i>nal enei</i> kJ/kg	rgy,	E	<i>kJ/kg</i>			<i>Entropy,</i> kJ/kg · K	
Press., <i>P</i> kPa	Sat. temp., <i>T_{sat} °</i> C	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., <i>h_{fg}</i>	Sat. vapor, h _g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, <i>s_g</i>
60	-36.95	0.0007098	0.31121	3.798	205.32	209.12	3.841	223.95	227.79	0.01634	0.94807	0.96441
70	-33.87	0.0007144	0.26929	7.680	203.20	210.88	7.730	222.00	229.73	0.03267	0.92775	0.96042
80	-31.13	0.0007185	0.23753	11.15	201.30	212.46	11.21	220.25	231.46	0.04711	0.90999	0.95710
90	-28.65	0.0007223	0.21263	14.31	199.57	213.88	14.37	218.65	233.02	0.06008	0.89419	0.95427
100	-26.37	0.0007259	0.19254	17.21	197.98	215.19	17.28	217.16	234.44	0.07188	0.87995	0.95183
120	-22.32	0.0007324	0.16212	22.40	195.11	217.51	22.49	214.48	236.97	0.09275	0.85503	0.94779
140	-18.77	0.0007383	0.14014	26.98	192.57	219.54	27.08	212.08	239.16	0.11087	0.83368	0.94456
160	-15.60	0.0007437	0.12348	31.09	190.27	221.35	31.21	209.90	241.11	0.12693	0.81496	0.94190
180	-12.73	0.0007487	0.11041	34.83	188.16	222.99	34.97	207.90	242.86	0.14139	0.79826	0.93965
200	-10.09	0.0007533	0.099867	38.28	186.21	224.48	38.43	206.03	244.46	0.15457	0.78316	0.93773
240	-5.38	0.0007620	0.083897	44.48	182.67	227.14	44.66	202.62	247.28	0.17794	0.75664	0.93458
280	-1.25	0.0007699	0.072352	49.97	179.50	229.46	50.18	199.54	249.72	0.19829	0.73381	0.93210
320	2.46	0.0007772	0.063604	54.92	176.61	231.52	55.16	196.71	251.88	0.21637	0.71369	0.93006
360	5.82	0.0007841	0.056738	59.44	173.94	233.38	59.72	194.08	253.81	0.23270	0.69566	0.92836
400	8.91	0.0007907	0.051201	63.62	171.45	235.07	63.94	191.62	255.55	0.24761	0.67929	0.92691
450	12.46	0.0007985	0.045619	68.45	168.54	237.00	68.81	188.71	257.53	0.26465	0.66069	0.92535
500	15.71	0.0008059	0.041118	72.93	165.82	238.75	73.33	185.98	259.30	0.28023	0.64377	0.92400
550	18.73	0.0008130	0.037408	77.10	163.25	240.35	77.54	183.38	260.92	0.29461	0.62821	0.92282
600	21.55	0.0008199	0.034295	81.02	160.81	241.83	81.51	180.90	262.40	0.30799	0.61378	0.92177
650	24.20	0.0008266	0.031646	84.72	158.48	243.20	85.26	178.51	263.77	0.32051	0.60030	0.92081
700	26.69	0.0008331	0.029361	88.24	156.24	244.48	88.82	176.21	265.03	0.33230	0.58763	0.91994
750	29.06	0.0008395	0.027371	91.59	154.08	245.67	92.22	173.98	266.20	0.34345	0.57567	0.91912
800	31.31	0.0008458	0.025621	94.79	152.00	246.79	95.47	171.82	267.29	0.35404	0.56431	0.91835
850	33.45	0.0008520	0.024069	97.87	149.98	247.85	98.60	169.71	268.31	0.36413	0.55349	0.91762
900	35.51	0.0008580	0.022683	100.83	148.01	248.85	101.61	167.66	269.26	0.37377	0.54315	0.91692
950	37.48	0.0008641	0.021438	103.69	146.10	249.79	104.51	165.64	270.15	0.38301	0.53323	0.91624
1000	39.37	0.0008700	0.020313	106.45	144.23	250.68	107.32	163.67	270.99	0.39189	0.52368	0.91558
1200	46.29	0.0008934	0.016715	116.70	137.11	253.81	117.77	156.10	273.87	0.42441	0.48863	0.91303
1400	52.40	0.0009166	0.014107	125.94	130.43	256.37	127.22	148.90	276.12	0.45315	0.45734	0.91050
1600	57.88	0.0009400	0.012123	134.43	124.04	258.47	135.93	141.93	277.86	0.47911	0.42873	0.90784
1800	62.87	0.0009639	0.010559	142.33	117.83	260.17	144.07	135.11	279.17	0.50294	0.40204	0.90498
2000	67.45	0.0009886	0.009288	149.78	111.73	261.51	151.76	128.33	280.09	0.52509	0.37675	0.90184
2500	77.54	0.0010566	0.006936	166.99	96.47	263.45	169.63	111.16	280.79	0.57531	0.31695	0.89226
3000	86.16	0.0011406	0.005275	183.04	80.22	263.26	186.46	92.63	279.09	0.62118	0.25776	0.87894

 ы		ы
 F 1		

Super	heated ref	rigerant-	134a									
Т	V	и	h	S	V	и	h	S	V	u	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K
	P = 0.0			.95°C)	P = 0	.10 MPa ($T_{\text{out}} = -26$.37°C)	P = 0.	14 MPa ($T_{\rm ext} = -18$.77°C)
Sat	0 21121	200.12	227 70	0.0611	0 10254	215 10	22/ //	0.0518	0 1/01/	210 54	220.16	0.0446
Sal. _20	0.31121	209.12	227.79	0.9644	0.19204	210.19	234.44	0.9010	0.14014	219.04	239.10	0.9440
-20	0.33008	220.00	240.70	1.0174	0.19841	219.00	239.30	1 0030	0 1/605	225 91	246 36	0 972/
0	0.36476	234 66	256 54	1.0774	0.20740	233.95	255 58	1.0000	0.14000	233 23	254 60	1 0031
10	0.37893	241 92	264.66	1.0774	0.22506	241.30	263.81	1.0628	0.15908	240.66	262.93	1.0001
20	0.39302	249.35	272 94	1 1353	0.23373	248 79	272 17	1.0918	0 16544	248.22	271.38	1.0624
30	0.40705	256.95	281.37	1.1636	0.24233	256.44	280.68	1.1203	0.17172	255.93	279.97	1.0912
40	0.42102	264.71	289.97	1.1915	0.25088	264.25	289.34	1.1484	0.17794	263.79	288.70	1,1195
50	0.43495	272.64	298.74	1.2191	0.25937	272.22	298.16	1.1762	0.18412	271.79	297.57	1.1474
60	0.44883	280.73	307.66	1.2463	0.26783	280.35	307.13	1.2035	0.19025	279.96	306.59	1.1749
70	0.46269	288.99	316.75	1.2732	0.27626	288.64	316.26	1.2305	0.19635	288.28	315.77	1.2020
80	0.47651	297.41	326.00	1.2997	0.28465	297.08	325.55	1.2572	0.20242	296.75	325.09	1.2288
90	0.49032	306.00	335.42	1.3260	0.29303	305.69	334.99	1.2836	0.20847	305.38	334.57	1.2553
100	0.50410	314.74	344.99	1.3520	0.30138	314.46	344.60	1.3096	0.21449	314.17	344.20	1.2814
	P = 0.	18 MPa (7	$f_{cat} = -12$.73°C)	<i>P</i> = 0	.20 MPa ($T_{\rm sat} = -10$.09°C)	<i>P</i> = 0	.24 MPa ($(T_{cat} = -5.$	38°C)
Cat	0 11041	222.00	242.06	0.0207	0 00007	224.40	244.46	0.0277	0.00200	227 14	017.00	0.0246
5al. _10	0.11041	222.99	242.00	0.9597	0.09967	224.40	244.40	0.9377	0.06590	227.14	247.20	0.9546
-10	0.11109	220.02	240.10	0.9404	0.09991	224.00	244.04	0.9360	0.08617	221 20	251.07	0.0510
10	0.11722	232.40	200.00	1.0102	0.10461	232.09	203.00	1.0004	0.00017	231.29	201.97	0.9019
20	0.12240	240.00	202.04	1.0102	0.10955	239.07	201.00	1.0004	0.09020	230.90	200.00	1 0124
20	0.12740	247.04	270.35	1.0599	0.11410	247.33	270.10	1.0505	0.09423	240.74	209.30	1.0134
10	0.13240	263 31	288.05	1.0050	0.11074	263.08	270.05	1.0355	0.03012	262 50	287.06	1.0425
40 50	0.13741	203.31	200.00	1.0575	0.12322	203.00	296.68	1.1163	0.10135	202.33	296.08	1 1001
50 60	0.14230	279 56	306.05	1.1230	0.12700	279.37	205.00	1.1105	0.10370	278.97	305.00	1.1001
70	0.14710	287.91	315.27	1.1302	0.136/1	287 73	315.01	1.171/	0.10342	287.36	31/ 51	1.1200
80	0.15150	296.42	324.63	1.1003	0.13041	296.25	324.40	1 1983	0.11675	295.91	323.93	1 1825
90	0.16149	305.42	334.14	1 2339	0.14504	304.92	333.93	1.1300	0.12038	304.60	333.49	1 2092
100	0.16622	313.88	343.80	1.2000	0.14033	313 74	343.60	1.2245	0.12000	313.44	343.20	1.2052
100		010.00	0 10.00	1.2002	0.11500	010.71	010.00	1.2012	0.12050	010.11	010.20	1.2000
	P = 0.	.28 MPa ($T_{\rm sat} = -1.5$	25°C)	P =	0.32 MPa	$(T_{\rm sat} = 2.4$	-6°C)	<i>P</i> = ().40 MPa	$(T_{\rm sat} = 8.9)$	91°C)
Sat.	0.07235	229.46	249.72	0.9321	0.06360	231.52	251.88	0.9301	0.051201	235.07	255.55	0.9269
0	0.07282	230.44	250.83	0.9362								
10	0.07646	238.27	259.68	0.9680	0.06609	237.54	258.69	0.9544	0.051506	235.97	256.58	0.9305
20	0.07997	246.13	268.52	0.9987	0.06925	245.50	267.66	0.9856	0.054213	244.18	265.86	0.9628
30	0.08338	254.06	277.41	1.0285	0.07231	253.50	276.65	1.0157	0.056796	252.36	275.07	0.9937
40	0.08672	262.10	286.38	1.0576	0.07530	261.60	285.70	1.0451	0.059292	260.58	284.30	1.0236
50	0.09000	2/0.2/	295.47	1.0862	0.07823	269.82	294.85	1.0/39	0.061/24	268.90	293.59	1.0528
60	0.09324	278.56	304.67	1.1142	0.08111	278.15	304.11	1.1021	0.064104	277.32	302.96	1.0814
70	0.09644	286.99	314.00	1.1418	0.08395	286.62	313.48	1.1298	0.066443	285.86	312.44	1.1094
80	0.09961	295.57	323.46	1.1690	0.086/5	295.22	322.98	1.15/1	0.068/4/	294.53	322.02	1.1369
90	0.10275	304.29	333.06	1.1958	0.08953	303.97	332.62	1.1840	0.071023	303.32	331.73	1.1640
100	0.1058/	313.15	342.80	1.2222	0.09229	312.86	342.39	1.2105	0.0/32/4	312.26	341.5/	1.190/
110	0.10897	322.16	352.68	1.2483	0.09503	321.89	352.30	1.2367	0.0/5504	321.33	351.53	1.21/1
120	0.11205	331.32	362.70	1.2/42	0.09//5	331.07	362.35	1.2626	0.0///17	330.55	361.63	1.2431
130	0.11512	340.63	3/2.8/	1.2997	0.10045	340.39	3/2.54	1.2882	0.079913	339.90	3/1.8/	1.2688
140	0.11818	350.09	383.18	1.3250	0.10314	349.86	382.87	1.3135	0.082096	349.41	382.24	1.2942

TABLE	A-13											
Superl	heated refr	igerant-1	134a (C	Continued)								
Т	V	и	h	S	V	и	h	s	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K
	P = 0.	50 MPa ($T_{sat} = 15$.71°C)	<i>P</i> = 0	.60 MPa ($T_{\rm sat} = 21.5$	55°C)	P = 0.	.70 MPa (<i>T</i> ,	 _{sat} = 26.6	9°C)
Sat	0.041118	238 75	259 30	0 9240	0 034295	241.83	262 40	0.9218	0 029361	244 48	265.03	0.9199
20	0.042115	242.40	263.46	0.9383	0.004233	241.00	202.40	0.5210	0.025501	277.70	200.00	0.5155
30	0.044338	250.84	273.01	0.9703	0.035984	249.22	270.81	0.9499	0.029966	247.48	268.45	0.9313
40	0.046456	259.26	282.48	1.0011	0.037865	257.86	280.58	0.9816	0.031696	256.39	278.57	0.9641
50	0.048499	267.72	291.96	1.0309	0.039659	266.48	290.28	1.0121	0.033322	265.20	288.53	0.9954
60	0.050485	276.25	301.50	1.0599	0.041389	275.15	299.98	1.0417	0.034875	274.01	298.42	1.0256
70	0.052427	284.89	311.10	1.0883	0.043069	283.89	309.73	1.0705	0.036373	282.87	308.33	1.0549
80	0.054331	293.64	320.80	1.1162	0.044710	292.73	319.55	1.0987	0.037829	291.80	318.28	1.0835
90	0.056205	302.51	330.61	1.1436	0.046318	301.67	329.46	1.1264	0.039250	300.82	328.29	1.1114
100	0.058053	311.50	340.53	1.1705	0.047900	310.73	339.47	1.1536	0.040642	309.95	338.40	1.1389
110	0.059880	320.63	350.57	1.1971	0.049458	319.91	349.59	1.1803	0.042010	319.19	348.60	1.1658
120	0.061687	329.89	360.73	1.2233	0.050997	329.23	359.82	1.2067	0.043358	328.55	358.90	1.1924
130	0.063479	339.29	371.03	1.2491	0.052519	338.67	370.18	1.2327	0.044688	338.04	369.32	1.2186
140	0.065256	348.83	381.46	1.2747	0.054027	348.25	380.66	1.2584	0.046004	347.66	379.86	1.2444
150	0.067021	358.51	392.02	1.2999	0.055522	357.96	391.27	1.2838	0.047306	357.41	390.52	1.2699
160	0.068775	368.33	402.72	1.3249	0.057006	367.81	402.01	1.3088	0.048597	367.29	401.31	1.2951
	P = 0.	80 MPa ($T_{\rm sat} = 31$.31°C)	<i>P</i> = 0	.90 MPa ($T_{\rm sat} = 35.5$	51°C)	<i>P</i> = 1.	.00 MPa (<i>T</i>	_{sat} = 39.3	7°C)
Sat.	0.025621	246.79	267.29	0.9183	0.022683	248.85	269.26	0.9169	0.020313	250.68	270.99	0.9156
40	0.027035	254.82	276.45	0.9480	0.023375	253.13	274.17	0.9327	0.020406	251.30	271.71	0.9179
50	0.028547	263.86	286.69	0.9802	0.024809	262.44	284.77	0.9660	0.021796	260.94	282.74	0.9525
60	0.0299/3	2/2.83	296.81	1.0110	0.026146	2/1.60	295.13	0.9976	0.023068	270.32	293.38	0.9850
/0	0.031340	281.81	306.88	1.0408	0.02/413	280.72	305.39	1.0280	0.024261	2/9.59	303.85	1.0160
80	0.032659	290.84	316.97	1.0698	0.028630	289.86	315.63	1.05/4	0.025398	288.86	314.25	1.0458
90	0.033941	299.95	327.10	1.0981	0.029806	299.06	325.89	1.0860	0.026492	298.15	324.04	1.0748
110	0.035193	309.15 210 AE	337.30	1.1208	0.030951	308.34	330.19	1.1140	0.02/002	307.51	335.00	1.1031
120	0.030420	207.97	347.39	1.1550	0.032000	227 19	340.00	1.1414	0.020004	310.94	340.00	1.1500
120	0.037023	327.07	368 /5	1.1750	0.033104	326.76	367.02	1 10/0	0.029592	326.11	366.60	1.1300
140	0.030013	347.06	379.05	1.2001	0.034241	346.46	378 23	1 2210	0.030501	345.85	377.40	1.1040
150	0.035503	356.85	389.76	1.2521	0.035302	356.28	389.00	1 2467	0.031554	355 71	388.22	1.2105
160	0.042290	366.76	400 59	1 2830	0.037384	366.23	399.88	1 2721	0.033457	365 70	399.15	1 2623
170	0.043427	376.81	411.55	1.3080	0.038408	376.31	410.88	1.2972	0.034392	375.81	410.20	1.2875
180	0.044554	386.99	422.64	1.3327	0.039423	386.52	422.00	1.3221	0.035317	386.04	421.36	1.3124
	P = 1	20 MPa (T - 16	20°C)	P - 1	10 MPa (T - 52 /	10°C)	P - 1	60 MPa (T	- 57.8	
Sat.	0.016715	253.81	273.87	0.9130	0.014107	256.37	276.12	0.9105	0.012123	258.47	277.86	0.9078
50	0.017201	257.63	278.27	0.9267								
60	0.018404	267.56	289.64	0.9614	0.015005	264.46	285.47	0.9389	0.012372	260.89	280.69	0.9163
70	0.019502	277.21	300.61	0.9938	0.016060	274.62	297.10	0.9733	0.013430	271.76	293.25	0.9535
80	0.020529	286.75	311.39	1.0248	0.017023	284.51	308.34	1.0056	0.014362	282.09	305.07	0.9875
90	0.021506	296.26	322.07	1.0546	0.017923	294.28	319.37	1.0364	0.015215	292.17	316.52	1.0194
100	0.022442	305.80	332.73	1.0836	0.018778	304.01	330.30	1.0661	0.016014	302.14	327.76	1.0500
110	0.023348	315.38	343.40	1.1118	0.019597	313.76	341.19	1.0949	0.016773	312.07	338.91	1.0795
120	0.024228	325.03	354.11	1.1394	0.020388	323.55	352.09	1.1230	0.017500	322.02	350.02	1.1081
130	0.025086	334.77	364.88	1.1664	0.021155	333.41	363.02	1.1504	0.018201	332.00	361.12	1.1360
140	0.025927	344.61	375.72	1.1930	0.021904	343.34	374.01	1.1773	0.018882	342.05	372.26	1.1632
150	0.026753	354.56	386.66	1.2192	0.022636	353.37	385.07	1.2038	0.019545	352.17	383.44	1.1900
160	0.027566	364.61	397.69	1.2449	0.023355	363.51	396.20	1.2298	0.020194	362.38	394.69	1.2163
170	0.028367	374.78	408.82	1.2703	0.024061	373.75	407.43	1.2554	0.020830	372.69	406.02	1.2421
180	0.029158	385.08	420.07	1.2954	0.024757	384.10	418.76	1.2807	0.021456	383.11	417.44	1.2676
					1			I				

Annexe B

Tables thermodynamiques de l'air

Ideal	-gas prope	rties of air									
Т	h		и		S°	Т	h		и		S°
Κ	kJ/kg	P_r	kJ/kg	V _r	kJ/kg ∙ K	K	kJ/kg	P_r	kJ/kg	V _r	kJ/kg · K
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
240 250 260 270 280 285	240.02 250.05 260.09 270.11 280.13 285.14	0.8355 0.7329 0.8405 0.9590 1.0889 1.1584	171.13 178.28 185.45 192.60 199.75 203.33	979.0 887.8 808.0 738.0 706.1	1.47824 1.51917 1.55848 1.59634 1.63279 1.65055	630 640 650 660 670	638.63 649.22 659.84 670.47 681.14	19.84 20.64 21.86 23.13 24.46	450.09 457.78 465.50 473.25 481.01 488.81	90.92 92.84 88.99 85.34 81.89 78.61	2.44356 2.46048 2.47716 2.49364 2.50985 2.52589
290	290.16	1.2311	206.91	676.1	1.66802	680	691.82	25.85	496.62	75.50	2.54175
295	295.17	1.3068	210.49	647.9	1.68515	690	702.52	27.29	504.45	72.56	2.55731
298	298.18	1.3543	212.64	631.9	1.69528	700	713.27	28.80	512.33	69.76	2.57277
300	300.19	1.3860	214.07	621.2	1.70203	710	724.04	30.38	520.23	67.07	2.58810
305	305.22	1.4686	217.67	596.0	1.71865	720	734.82	32.02	528.14	64.53	2.60319
310	310.24	1.5546	221.25	572.3	1.73498	730	745.62	33.72	536.07	62.13	2.61803
315	315.27	1.6442	224.85	549.8	1.75106	740	756.44	35.50	544.02	59.82	2.63280
320	320.29	1.7375	228.42	528.6	1.76690	750	767.29	37.35	551.99	57.63	2.64737
325	325.31	1.8345	232.02	508.4	1.78249	760	778.18	39.27	560.01	55.54	2.66176
330	330.34	1.9352	235.61	489.4	1.79783	780	800.03	43.35	576.12	51.64	2.69013
340	340.42	2.149	242.82	454.1	1.82790	800	821.95	47.75	592.30	48.08	2.71787
350	350.49	2.379	250.02	422.2	1.85708	820	843.98	52.59	608.59	44.84	2.74504
360	360.58	2.626	257.24	393.4	1.88543	840	866.08	57.60	624.95	41.85	2.77170
370	370.67	2.892	264.46	367.2	1.91313	860	888.27	63.09	641.40	39.12	2.79783
380	380.77	3.176	271.69	343.4	1.94001	880	910.56	68.98	657.95	36.61	2.82344
390	390.88	3.481	278.93	321.5	1.96633	900	932.93	75.29	674.58	34.31	2.84856
400	400.98	3.806	286.16	301.6	1.99194	920	955.38	82.05	691.28	32.18	2.87324
410	411.12	4.153	293.43	283.3	2.01699	940	977.92	89.28	708.08	30.22	2.89748
420	421.26	4.522	300.69	266.6	2.04142	960	1000.55	97.00	725.02	28.40	2.92128
430	431.43	4.915	307.99	251.1	2.06533	980	1023.25	105.2	741.98	26.73	2.94468
440	441.61	5.332	315.30	236.8	2.08870	1000	1046.04	114.0	758.94	25.17	2.96770
450	451.80	5.775	322.62	223.6	2.11161	1020	1068.89	123.4	776.10	23.72	2.99034
460	462.02	6.245	329.97	211.4	2.13407	1040	1091.85	133.3	793.36	23.29	3.01260
470	472.24	6.742	337.32	200.1	2.15604	1060	1114.86	143.9	810.62	21.14	3.03449
480	482.49	7.268	344.70	189.5	2.17760	1080	1137.89	155.2	827.88	19.98	3.05608
490	492.74	7.824	352.08	179.7	2.19876	1100	1161.07	167.1	845.33	18.896	3.07732
500	503.02	8.411	359.49	170.6	2.21952	1120	1184.28	179.7	862.79	17.886	3.09825
510	513.32	9.031	366.92	162.1	2.23993	1140	1207.57	193.1	880.35	16.946	3.11883
520	523.63	9.684	374.36	154.1	2.25997	1160	1230.92	207.2	897.91	16.064	3.13916
530	533.98	10.37	381.84	146.7	2.27967	1180	1254.34	222.2	915.57	15.241	3.15916
540 550 560 570	544.35 555.74 565.17 575.59	11.10 11.86 12.66 13.50	389.34 396.86 404.42 411.97	139.7 133.1 127.0 121.2	2.29906 2.31809 2.33685 2.35531	1200 1220 1240	1277.79 1301.31 1324.93	238.0 254.7 272.3	933.33 951.09 968.95	14.470 13.747 13.069	3.17888 3.19834 3.21751

TABLE	A–17										
ldeal-g	gas propertie	s of air (Concluded)								
T K	h kJ/kg	P _r	u kJ/kg	V _r	<i>s</i> ° kJ/kg ⋅ K	T K	h kJ/kg	P _r	u kJ/kg	V _r	s° kJ/kg ∙ K
1260	1348.55	290.8	986.90	12.435	3.23638	1600	1757.57	791.2	1298.30	5.804	3.52364
1280	1372.24	310.4	1004.76	11.835	3.25510	1620	1782.00	834.1	1316.96	5.574	3.53879
1300	1395.97	330.9	1022.82	11.275	3.27345	1640	1806.46	878.9	1335.72	5.355	3.55381
1320	1419.76	352.5	1040.88	10.747	3.29160	1660	1830.96	925.6	1354.48	5.147	3.56867
1340	1443.60	375.3	1058.94	10.247	3.30959	1680	1855.50	974.2	1373.24	4.949	3.58335
1360	1467.49	399.1	1077.10	9.780	3.32724	1700	1880.1	1025	1392.7	4.761	3.5979
1380	1491.44	424.2	1095.26	9.337	3.34474	1750	1941.6	1161	1439.8	4.328	3.6336
1400	1515.42	450.5	1113.52	8.919	3.36200	1800	2003.3	1310	1487.2	3.994	3.6684
1420	1539.44	478.0	1131.77	8.526	3.37901	1850	2065.3	1475	1534.9	3.601	3.7023
1440	1563.51	506.9	1150.13	8.153	3.39586	1900	2127.4	1655	1582.6	3.295	3.7354
1460	1587.63	537.1	1168.49	7.801	3.41247	1950	2189.7	1852	1630.6	3.022	3.7677
1480	1611.79	568.8	1186.95	7.468	3.42892	2000	2252.1	2068	1678.7	2.776	3.7994
1500	1635.97	601.9	1205.41	7.152	3.44516	2050	2314.6	2303	1726.8	2.555	3.8303
1520	1660.23	636.5	1223.87	6.854	3.46120	2100	2377.7	2559	1775.3	2.356	3.8605
1540	1684.51	672.8	1242.43	6.569	3.47712	2150	2440.3	2837	1823.8	2.175	3.8901
1560	1708.82	710.5	1260.99	6.301	3.49276	2200	2503.2	3138	1872.4	2.012	3.9191
1580	1733.17	750.0	1279.65	6.046	3.50829	2250	2566.4	3464	1921.3	1.864	3.9474

Note: The properties P_r (relative pressure) and v_r (relative specific volume) are dimensionless quantities used in the analysis of isentropic processes, and should not be confused with the properties pressure and specific volume.

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 785–86, table A–5. Originally published in J. H. Keenan and J. Kaye, Gas Tables (New York: John Wiley & Sons, 1948).

Annexe C

Tables thermodynamiques de l'eau

Satura	rated water—Temperature table											
		<i>Specin</i> r	<i>fic volume,</i> n ³ /kg		<i>nternal e</i> kJ/kg	nergy,		<i>Enthalp</i> kJ/kg	<i>y,</i>		<i>Entropy,</i> kJ/kg · K	
Temp., <i>T</i> °C	Sat. press., <i>P_{sat}</i> kPa	Sat. liquid, v _f	Sat. vapor, v _g	Sat. Iiquid, <i>u_f</i>	Evap., <i>u_{fg}</i>	Sat. vapor, <i>u_g</i>	Sat. liquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, <i>h_g</i>	Sat. liquid, s _f	Evap., <i>s_{fg}</i>	Sat. vapor, <i>s_g</i>
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9	0.0000	9.1556	9.1556
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1	0.0763	8.9487	9.0249
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2	0.1511	8.7488	8.8999
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3	0.2245	8.5559	8.7803
20	2.3392	0.001002	57.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4	0.2965	8.3696	8.6661
25	3.1698	0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5	0.3672	8.1895	8.5567
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6	0.4368	8.0152	8.4520
35	5.6291	0.001006	25.205	146.63	2276.0	2422.7	146.64	2417.9	2564.6	0.5051	7.8466	8.3517
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4	167.53	2406.0	2573.5	0.5724	7.6832	8.2556
45	9.5953	0.001010	15.251	188.43	2247.7	2436.1	188.44	2394.0	2582.4	0.6386	7.5247	8.1633
50	12.352	0.001012	12.026	209.33	2233.4	2442.7	209.34	2382.0	2591.3	0.7038	7.3710	8.0748
55	15.763	0.001015	9.5639	230.24	2219.1	2449.3	230.26	2369.8	2600.1	0.7680	7.2218	7.9898
60	19.947	0.001017	7.6670	251.16	2204.7	2455.9	251.18	2357.7	2608.8	0.8313	7.0769	7.9082
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5	0.8937	6.9360	7.8296
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	0.9551	6.7989	7.7540
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	1.0158	6.6655	7.6812
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0	1.0756	6.5355	7.6111
85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4	1.1346	6.4089	7.5435
90	70.183	0.001036	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6	1.1929	6.2853	7.4782
95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6	1.2504	6.1647	7.4151
100	101.42	0.001043	1.6720	419.06	2087.0	2506.0	419.17	2256.4	2675.6	1.3072	6.0470	7.3542
105	120.90	0.001047	1.4186	440.15	2071.8	2511.9	440.28	2243.1	2683.4	1.3634	5.9319	7.2952
110	143.38	0.001052	1.2094	461.27	2056.4	2517.7	461.42	2229.7	2691.1	1.4188	5.8193	7.2382
115	169.18	0.001056	1.0360	482.42	2040.9	2523.3	482.59	2216.0	2698.6	1.4737	5.7092	7.1829
120	198.67	0.001060	0.89133	503.60	2025.3	2528.9	503.81	2202.1	2706.0	1.5279	5.6013	7.1292
125	232.23	0.001065	0.77012	524.83	2009.5	2534.3	525.07	2188.1	2713.1	1.5816	5.4956	7.0771
130	270.28	0.001070	0.66808	546.10	1993.4	2539.5	546.38	2173.7	2720.1	1.6346	5.3919	7.0265
135	313.22	0.001075	0.58179	567.41	1977.3	2544.7	567.75	2159.1	2726.9	1.6872	5.2901	6.9773
140	361.53	0.001080	0.50850	588.77	1960.9	2549.6	589.16	2144.3	2733.5	1.7392	5.1901	6.9294
145	415.68	0.001085	0.44600	610.19	1944.2	2554.4	610.64	2129.2	2739.8	1.7908	5.0919	6.8827
150	476.16	0.001091	0.39248	631.66	1927.4	2559.1	632.18	2113.8	2745.9	1.8418	4.9953	6.8371
155	543.49	0.001096	0.34648	653.19	1910.3	2563.5	653.79	2098.0	2751.8	1.8924	4.9002	6.7927
160	618.23	0.001102	0.30680	674.79	1893.0	2567.8	675.47	2082.0	2757.5	1.9426	4.8066	6.7492
165	700.93	0.001108	0.27244	696.46	1875.4	2571.9	697.24	2065.6	2762.8	1.9923	4.7143	6.7067
170	792.18	0.001114	0.24260	718.20	1857.5	2575.7	719.08	2048.8	2767.9	2.0417	4.6233	6.6650
175	892.60	0.001121	0.21659	740.02	1839.4	2579.4	741.02	2031.7	2772.7	2.0906	4.5335	6.6242
180	1002.8	0.001127	0.19384	761.92	1820.9	2582.8	763.05	2014.2	2777.2	2.1392	4.4448	6.5841
185	1123.5	0.001134	0.17390	783.91	1802.1	2586.0	785.19	1996.2	2781.4	2.1875	4.3572	6.5447
190	1255.2	0.001141	0.15636	806.00	1783.0	2589.0	807.43	1977.9	2785.3	2.2355	4.2705	6.5059
195	1398.8	0.001149	0.14089	828.18	1763.6	2591.7	829.78	1959.0	2788.8	2.2831	4.1847	6.4678
200	1554.9	0.001157	0.12721	850.46	1743.7	2594.2	852.26	1939.8	2792.0	2.3305	4.0997	6.4302

TABLE A	\4											
Saturate	ed water—	Temperatur	re table (<i>Con</i>	tinued)								
		Specifi	c volume,	In	ternal en	ergy,		Enthalp	<i>y,</i>		Entropy,	
		m	¹³ /kg		kJ/kg			kJ/kg			kJ/kg ∙ K	
Temp.,	Sat. press.,	Sat. Iiquid,	Sat. vapor,	Sat. Iiquid,	Evap.,	Sat. vapor,	Sat. Iiquid,	Evap.,	Sat. vapor,	Sat. Iiquid,	Evap.,	Sat. vapor,
T °C	P _{sat} kPa	V _f	Vg	U _f	U _{fg}	U _g	h _f	h _{fg}	hg	S _f	S _{fg}	Sg
205	1724.3	0.001164	0.11508	872.86	1723.5	2596.4	874.87	1920.0	2794.8	2.3776	4.0154	6.3930
210	1907.7	0.001173	0.10429	895.38	1702.9	2598.3	897.61	1899.7	2797.3	2.4245	3.9318	6.3563
215	2105.9	0.001181	0.094680	918.02	1681.9	2599.9	920.50	1878.8	2799.3	2.4712	3.8489	6.3200
220	2319.6	0.001190	0.086094	940.79	1660.5	2601.3	943.55	1857.4	2801.0	2.5176	3.7664	6.2840
225	2549.7	0.001199	0.078405	963.70	1638.6	2602.3	966.76	1835.4	2802.2	2.5639	3.6844	6.2483
230	2797.1	0.001209	0.071505	986.76	1616.1	2602.9	990.14	1812.8	2802.9	2.6100	3.6028	6.2128
235	3062.6	0.001219	0.065300	1010.0	1593.2	2603.2	1013.7	1789.5	2803.2	2.6560	3.5216	6.1775
240	3347.0	0.001229	0.059707	1033.4	1569.8	2603.1	1037.5	1765.5	2803.0	2.7018	3.4405	6.1424
245	3651.2	0.001240	0.054656	1056.9	1545.7	2602.7	1061.5	1740.8	2802.2	2.7476	3.3596	6.1072
250	3976.2	0.001252	0.050085	1080.7	1521.1	2601.8	1085.7	1715.3	2801.0	2.7933	3.2788	6.0721
255	4322.9	0.001263	0.045941	1104.7	1495.8	2600.5	1110.1	1689.0	2799.1	2.8390	3.1979	6.0369
260	4692.3	0.001276	0.042175	1128.8	1469.9	2598.7	1134.8	1661.8	2796.6	2.8847	3.1169	6.0017
265	5085.3	0.001289	0.038748	1153.3	1443.2	2596.5	1159.8	1633.7	2793.5	2.9304	3.0358	5.9662
270	5503.0	0.001303	0.035622	1177.9	1415.7	2593.7	1185.1	1604.6	2789.7	2.9762	2.9542	5.9305
275	5946.4	0.001317	0.032767	1202.9	1387.4	2590.3	1210.7	1574.5	2785.2	3.0221	2.8723	5.8944
280	6416.6	0.001333	0.030153	1228.2	1358.2	2586.4	1236.7	1543.2	2779.9	3.0681	2.7898	5.8579
285	6914.6	0.001349	0.027756	1253.7	1328.1	2581.8	1263.1	1510.7	2773.7	3.1144	2.7066	5.8210
290	7441.8	0.001366	0.025554	1279.7	1296.9	2576.5	1289.8	1476.9	2766.7	3.1608	2.6225	5.7834
295	7999.0	0.001384	0.023528	1306.0	1264.5	2570.5	1317.1	1441.6	2758.7	3.2076	2.5374	5.7450
300	8587.9	0.001404	0.021659	1332.7	1230.9	2563.6	1344.8	1404.8	2749.6	3.2548	2.4511	5.7059
305	9209.4	0.001425	0.019932	1360.0	1195.9	2555.8	1373.1	1366.3	2739.4	3.3024	2.3633	5.6657
310	9865.0	0.001447	0.018333	1387.7	1159.3	2547.1	1402.0	1325.9	2727.9	3.3506	2.2737	5.6243
315	10,556	0.001472	0.016849	1416.1	1121.1	2537.2	1431.6	1283.4	2715.0	3.3994	2.1821	5.5816
320	11,284	0.001499	0.015470	1445.1	1080.9	2526.0	1462.0	1238.5	2700.6	3.4491	2.0881	5.5372
325	12,051	0.001528	0.014183	1475.0	1038.5	2513.4	1493.4	1191.0	2684.3	3.4998	1.9911	5.4908
330	12,858	0.001560	0.012979	1505.7	993.5	2499.2	1525.8	1140.3	2666.0	3.5516	1.8906	5.4422
335	13,707	0.001597	0.011848	1537.5	945.5	2483.0	1559.4	1086.0	2645.4	3.6050	1.7857	5.3907
340	14,601	0.001638	0.010783	1570.7	893.8	2464.5	1594.6	1027.4	2622.0	3.6602	1.6756	5.3358
345	15,541	0.001685	0.009772	1605.5	837.7	2443.2	1631.7	963.4	2595.1	3.7179	1.5585	5.2765
350	16,529	0.001741	0.008806	1642.4	775.9	2418.3	1671.2	892.7	2563.9	3.7788	1.4326	5.2114
355	17,570	0.001808	0.007872	1682.2	706.4	2388.6	1714.0	812.9	2526.9	3.8442	1.2942	5.1384
360	18,666	0.001895	0.006950	1726.2	625.7	2351.9	1761.5	720.1	2481.6	3.9165	1.1373	5.0537
365	19,822	0.002015	0.006009	1777.2	526.4	2303.6	1817.2	605.5	2422.7	4.0004	0.9489	4.9493
370	21,044	0.002217	0.004953	1844.5	385.6	2230.1	1891.2	443.1	2334.3	4.1119	0.6890	4.8009
373.95	22,064	0.003106	0.003106	2015.7	0	2015.7	2084.3	0	2084.3	4.4070	0	4.4070

Source: Tables A–4 through A–8 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1933). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," *ASHRAE Trans.*, Part 2A, Paper 2793, 1983.

Saturate	ed water-	–Pressure t	able									
		Specia	f <i>ic volume,</i> m ³ /kg		Internal e kJ/kg	nergy,		<i>Enthalpy</i> kJ/kg	;		<i>Entropy,</i> kJ/kg · K	
Press., <i>P</i> kPa	Sat. temp., <i>T</i> _{sat} °C	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, <i>h_g</i>	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, <i>s_g</i>
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.9749
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.8270
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621	8.7227
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	8.6421
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5765
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300	133.52	0.001073	0.60582	561.11	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.9917
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6	1.7005	5.2645	6.9650
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	1.7274	5.2128	6.9402
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.9171
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738.1	1.7765	5.1191	6.8955
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4	1.8205	5.0356	6.8561
500	151.83	0.001093	0.37483	639.54	1921.2	2560.7	640.09	2108.0	2748.1	1.8604	4.9603	6.8207
550	155.46	0.001097	0.34261	655.16	1908.8	2563.9	655.77	2096.6	2752.4	1.8970	4.8916	6.7886
600	158.83	0.001101	0.31560	669.72	1897.1	2566.8	670.38	2085.8	2756.2	1.9308	4.8285	6.7593
650	161.98	0.001104	0.29260	683.37	1886.1	2569.4	684.08	2075.5	2759.6	1.9623	4.7699	6.7322
700	164.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1.9918	4.7153	6.7071
750	167.75	0.001111	0.25552	708.40	1865.6	2574.0	709.24	2056.4	2765.7	2.0195	4.6642	6.6837

TABLE A	-5											
Saturate	d water—	-Pressure ta	ble (<i>Continu</i>	ued)								
		Specific	volume,	In	ternal en	ergy,		Enthalpy	;		Entropy,	
		m	³ /kg		kJ/kg			kJ/kg			kJ/kg ∙ K	
Proce	Sat.	Sat.	Sat.	Sat. Jiguid	Fyan	Sat.	Sat. liquid	Fyan	Sat.	Sat. liquid	Fyan	Sat.
P kPa	T _{sat} °C	V _f	Vapor, V _g	liquid, U _f	∟vap., U _{fg}	u _g	hquiu, h _f	h _{fg}	h _g	S _f	∟vap., S _{fg}	S _g
800	170.41	0.001115	0.24035	719.97	1856.1	2576.0	720.87	2047.5	2768.3	2.0457	4.6160	6.6616
850	172.94	0.001118	0.22690	731.00	1846.9	2577.9	731.95	2038.8	2770.8	2.0705	4.5705	6.6409
900	175.35	0.001121	0.21489	741.55	1838.1	2579.6	742.56	2030.5	2773.0	2.0941	4.5273	6.6213
950	177.66	0.001124	0.20411	751.67	1829.6	2581.3	752.74	2022.4	2775.2	2.1166	4.4862	6.6027
1000	179.88	0.001127	0.19436	761.39	1821.4	2582.8	762.51	2014.6	2777.1	2.1381	4.4470	6.5850
1100	184.06	0.001133	0.17745	779.78	1805.7	2585.5	781.03	1999.6	2780.7	2.1785	4.3735	6.5520
1200	187.96	0.001138	0.16326	796.96	1790.9	2587.8	798.33	1985.4	2783.8	2.2159	4.3058	6.5217
1300	191.60	0.001144	0.15119	813.10	1776.8	2589.9	814.59	1971.9	2786.5	2.2508	4.2428	6.4936
1400	195.04	0.001149	0.14078	828.35	1763.4	2591.8	829.96	1958.9	2788.9	2.2835	4.1840	6.4675
1500	198.29	0.001154	0.13171	842.82	1750.6	2593.4	844.55	1946.4	2791.0	2.3143	4.1287	6.4430
1750	205.72	0.001166	0.11344	876.12	1720.6	2596.7	878.16	1917.1	2795.2	2.3844	4.0033	6.3877
2000	212.38	0.001177	0.099587	906.12	1693.0	2599.1	908.47	1889.8	2798.3	2.4467	3.8923	6.3390
2250	218.41	0.001187	0.088717	933.54	1667.3	2600.9	936.21	1864.3	2800.5	2.5029	3.7926	6.2954
2500	223.95	0.001197	0.079952	958.87	1643.2	2602.1	961.87	1840.1	2801.9	2.5542	3.7016	6.2558
3000	233.85	0.001217	0.066667	1004.6	1598.5	2603.2	1008.3	1794.9	2803.2	2.6454	3.5402	6.1856
3500	242.56	0.001235	0.057061	1045.4	1557.6	2603.0	1049.7	1753.0	2802.7	2.7253	3.3991	6.1244
4000	250.35	0.001252	0.049779	1082.4	1519.3	2601.7	1087.4	1713.5	2800.8	2.7966	3.2731	6.0696
5000	263.94	0.001286	0.039448	1148.1	1448.9	2597.0	1154.5	1639.7	2794.2	2.9207	3.0530	5.9737
6000	275.59	0.001319	0.032449	1205.8	1384.1	2589.9	1213.8	1570.9	2784.6	3.0275	2.8627	5.8902
7000	285.83	0.001352	0.027378	1258.0	1323.0	2581.0	1267.5	1505.2	2772.6	3.1220	2.6927	5.8148
8000	295.01	0.001384	0.023525	1306.0	1264.5	2570.5	1317.1	1441.6	2758.7	3.2077	2.5373	5.7450
9000	303.35	0.001418	0.020489	1350.9	1207.6	2558.5	1363.7	1379.3	2742.9	3.2866	2.3925	5.6791
10,000	311.00	0.001452	0.018028	1393.3	1151.8	2545.2	1407.8	1317.6	2725.5	3.3603	2.2556	5.6159
11,000	318.08	0.001488	0.015988	1433.9	1096.6	2530.4	1450.2	1256.1	2706.3	3.4299	2.1245	5.5544
12,000	324.68	0.001526	0.014264	1473.0	1041.3	2514.3	1491.3	1194.1	2685.4	3.4964	1.9975	5.4939
13,000	330.85	0.001566	0.012781	1511.0	985.5	2496.6	1531.4	1131.3	2662.7	3.5606	1.8730	5.4336
14,000	336.67	0.001610	0.011487	1548.4	928.7	2477.1	1571.0	1067.0	2637.9	3.6232	1.7497	5.3728
15,000	342.16	0.001657	0.010341	1585.5	870.3	2455.7	1610.3	1000.5	2610.8	3.6848	1.6261	5.3108
16,000	347.36	0.001710	0.009312	1622.6	809.4	2432.0	1649.9	931.1	2581.0	3.7461	1.5005	5.2466
17,000	352.29	0.001770	0.008374	1660.2	745.1	2405.4	1690.3	857.4	2547.7	3.8082	1.3709	5.1791
18,000	356.99	0.001840	0.007504	1699.1	675.9	2375.0	1732.2	777.8	2510.0	3.8720	1.2343	5.1064
19,000	361.47	0.001926	0.006677	1740.3	598.9	2339.2	1776.8	689.2	2466.0	3.9396	1.0860	5.0256
20,000	365.75	0.002038	0.005862	1785.8	509.0	2294.8	1826.6	585.5	2412.1	4.0146	0.9164	4.9310
21,000	369.83	0.002207	0.004994	1841.6	391.9	2233.5	1888.0	450.4	2338.4	4.1071	0.7005	4.8076
22,000	373.71	0.002703	0.003644	1951.7	140.8	2092.4	2011.1	161.5	2172.6	4.2942	0.2496	4.5439
22,064	373.95	0.003106	0.003106	2015.7	0	2015.7	2084.3	0	2084.3	4.4070	0	4.4070

TA	B	LE	A-	-6

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Superh	eated wate	r										
C m³/kg kJ/kg kJ/	Т	V	и	h	s	V	и	h	S	V	и	h	S
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	°C	m ³ /kg	k.l/kg	k.l/kg	k.l/kg · K	m ³ /kg	k.l/kg	k.l/kg	k.l/kg ⋅ K	m ³ /kg	k.l/kg	k.l/kg	k.J/kg · K
$P = 0.01 MPa (45.81°)^{\circ}$ $P = 0.05 MPa (81.32°)^{\circ}$ $P = 0.10 MPa (95.61°)^{\circ}$ Sat. ¹ 14.670 2437.2 258.39 8.1488 3.2403 2483.2 2264.2 7.9531 1.6941 2505.2 2675.8 7.3569 100 17.196 2515.5 2687.5 8.4489 3.1897 2585.7 2790.2 2797.5 2582.9 277.6 7.6148 200 21.826 2661.4 2879.6 8.9049 4.3562 2660.0 2877.8 8.1582 2.1724 2688.2 287.5 7.830.3 200 21.646 2812.3 3076.7 9.2827 5.2841 2811.6 3075.8 8.555 3132.2 3488.7 8.8563 10.027 9.833 3706.8 8.593 10.028 35656 3132.2 3488.7 8.3326 4.027 3303.3 3706.3 9.1434 401 3480.3 378.9 1.0460.4 329.9 9.440.4 4.027 3305.6 4.048.0 392.9 9.440.40 9.893.3 1.0482				10,10						,	10,10		
Sat. ¹ 14.670 243.2 283.9 8.1488 3.2402 2483.2 264.5.2 7.5331 1.6941 250.5 267.0 7.3589 100 17.196 251.5 2687.7 278.0 8.6893 3.8897 258.7 2780.2 7.9411 1.9362 256.2 2675.8 7.3611 150 19.513 2567.1 2771.6 9.004 4.3562 2606.0 2877.8 8.1592 1.127.2 255.5 7.8358 200 21.64 281.23 3706.7 9.287.7 5.2841 2811.6 307.58 8.537 2.6389 281.07 307.4 8.217 400 31.063 290.93 3280.0 9.0694 266.9 327.9 8.859 3.102.7 9.833 328.6 9.322.8 3706.6 9.0999 3.065.6 313.29 348.7 9.9994 3.065.2 462.7 1.0230 5.855 44.00 340.0 9.804 9.047 5.055 4.400 340.0 9.040 9.011.33.2 <td></td> <td>P =</td> <td>0.01 MF</td> <td>°a (45.81°</td> <td>°C)*</td> <td>P =</td> <td>0.05 MP</td> <td>a (81.32°</td> <td>C)</td> <td colspan="4">P = 0.10 MPa (99.61°C)</td>		P =	0.01 MF	°a (45.81°	°C)*	P =	0.05 MP	a (81.32°	C)	P = 0.10 MPa (99.61°C)			
50 14.867 24.33 2592.0 8.1741 100 17.196 251.55 2687.5 8.4489 251.5 2687.5 8.4489 251.5 2687.5 8.4489 251.5 2687.5 8.1489 21.724 2656.2 27.31.9 277.6 7.6148 200 21.826 261.42 2877.5 9.1015 4.8206 27.31.9 277.6 8.3389 2.1724 2658.2 287.5 8.8343 300 26.446 281.23 307.6 9.2827 5.2841 2811.6 307.58 8.5563 13.02.6 8.4659 127.9 302.8 370.6 9.04201 40.266 332.3 370.6.1 10.1631 8.9517 3408.6 392.97 9.6624 4400.4 3428.4 8.913 3448.6 392.97 9.6424 40.245 337.8 8.981 348.6 392.97 9.6624 4400.4 340.4 322.4 8.893.5 0.842.9 9.00.056 8.981.0 0.429 9.899.3 9.8659 <td< td=""><td>Sat.†</td><td>14.670</td><td>2437.2</td><td>2583.9</td><td>8.1488</td><td>3.2403</td><td>2483.2</td><td>2645.2</td><td>7.5931</td><td>1.6941</td><td>2505.6</td><td>2675.0</td><td>7.3589</td></td<>	Sat.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589
100 17.196 2515.5 2687.5 8.4489 3.4187 2511.5 2682.4 7.693.1 1.6959 250.2 267.5 7.8356 250 21.825 2661.4 2879.6 8.9049 4.3562 2660.0 2877.8 8.1592 2.1724 2658.2 2875.5 7.8356 250 21.826 2661.4 2877.5 9.1015 4.8206 2733.1 2976.2 8.3589 2.6329 271.6 8.172 400 31.063 2969.3 3280.0 9.6094 62.094 2966.3 312.2 3488.7 8.8539 3.1057 9.837.8 8.858 200 54.143 3865.9 399.9 1.0366 392.7 9.662.4 4.000 3480.4 9.9047 365.2 4.101.000 54.75 405.0 4.462.8 1.0.429 1.0300 55.75 405.0 4.462.8 1.0.429 1.0300 54.75 405.0 4.462.8 1.0.429 1.0513 405.2 4.427.10.0000 55.75 4.050.0	50	14.867	2443.3	2592.0	8.1741								
150 19.513 2587.9 2780.0 2786.7 2780.2 7.9413 1.9367 2582.9 2776.6 7.6148 200 21.826 2614.1 2971.5 9.1015 4.8260 2735.1 2976.2 8.3568 2.4062 2733.9 2974.5 8.0366 300 26.446 2812.3 3076.7 9.2227 5.2841 2811.6 3075.8 8.5837 2.6389 210.7 3074.5 8.42172 500 35.680 312.9 3489.7 9.8998 7.1338 3132.6 3480.6 392.9 300.6 9.99970 4.4911 3480.6 392.9 10.6616 8.9813 3480.6 392.7 9.6626 4.4003 3480.4 392.4 9.9447 3655.2 4160.4 9.8833 4.9519 3665.0 416.2 9.5682 9.9407 3655.2 4160.4 9.8833 10.840.4 392.4 10.000 5.875 4393.5 0.10683 3737 4250.4 4893.5 10.1068 5.8981 10.462.4 2455.0 442.6 9.9800 10.0053.37 4250.4 4250.4 4250.4	100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675.8	7.3611
200 21.826 266.1.4 287.5 7.8356 201 21.364 2736.1 2776.2 2.375.1 276.2 8.3568 2.4062 273.3 2.974.5 8.3368 300 26.446 2812.3 3076.7 9.2827 5.2841 2811.6 3075.8 8.5387 2.4062 273.3 2.974.5 8.346.5 300 26.446 2812.3 3076.7 9.2827 5.2841 2811.6 3075.8 8.5387 2.4062 273.3 2.974.5 8.348.7 8.8362 600 4.029 330.3 3706.6 10.618 8.0577 330.1 3706.0 9.4021 4.0279 3302.4 9.3424 9.3224 9.3424 800 49.527 3665.4 4160.6 10.6312 9.9047 3665.2 410.4 9.8886 4.900 3480.6 392.7 10.300 5.4133 3886.8 4.392.1 10.1000 5.4133 3886.7 439.0 9.1000 5.4133 10.5229 10.537 405	150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367	2582.9	2776.6	7.6148
250 24.136 2736.1 2977.5 9.1015 4.8206 2735.1 2976.2 8.35687 2.4052 233.9 2974.5 8.0346 00 31.063 2969.3 3280.0 9.6094 6.2094 2968.9 3279.3 8.8659 3.1027 2968.3 3273.6 8.5452 00 35.680 312.9 3489.7 9.8998 7.1338 3132.6 3480.6 9.227 9.6626 4.40279 3302.8 3705.6 9.9997 04 49.11 3480.8 3929.9 10.4056 8.9813 3480.6 392.7 9.6626 4.40279 3302.8 3705.6 9.9997 04 49.527 3665.4 4160.6 10.6312 9.9497.1 10.6220 5.875 4055.0 442.6 9.9800 1000 58.758 4055.3 4642.8 11.1422 11.5713 4052.2 4462.7 10.3000 5.8754 4470.5 5150.6 150.893.6 10.3954 1300 72.604 4677.4 511.4 11.5857 14470.8 5150.6 10.3504 6.9915	200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724	2658.2	2875.5	7.8356
300 26.446 281.23 3076.7 9.2827 5.2841 281.16 3075.8 8.5387 2.6389 210.7 3074.5 8.2172 500 35.680 313.2 3480.7 9898 7.138 3132.6 3489.3 9.1566 3.5655 3132.2 3488.7 8.8362 600 40.296 3303.3 3706.3 10.651 8.9813 3480.6 392.7 5.665.4 4.900 3480.4 392.9 9.322.4 9.324.4 800 4.9527 3665.4 4160.6 10.6512 9.9047 3665.2 4160.4 9.883 4.913 3880.6 392.91 10.4056 5.8755 4055.0 4642.6 9.9800 100 63.373 4260.0 4893.8 11.2326 12.6745 4259.9 4897.7 10.506 1.575.5 10.552.6 4647.5 5413.3 10.829 7.2605 4687.2 5413.3 10.5229 489.35 10.1638 100 5.8758 4050.5 3413.2	250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062	2733.9	2974.5	8.0346
400 31.063 2969.3 3220.0 9.6094 2.0249 2968.9 3279.3 8.8659 31.526 348.65 31.526 348.65 31.526 348.65 31.526 348.65 31.526 348.65 31.526 348.61 392.97 9.6626 4.4900 3480.4 392.94 9.4626 4.4901 3480.4 392.94 9.4626 4.4901 3480.4 392.94 9.3424 9.3424 9.9429 9.3424 9.3424 9.3424 9.3424 9.3424 9.3424 9.3424 9.3424 9.340.9 9.800 5.8755 4452.8 10.6029 5.8755 4452.8 9.9800 9.7800 166.24 9.9800 5.8755 4452.8 10.4897 6.3372 4258.8 499.6 10.5204 6.3712 456.2 8.410.7 15.056 10.5204	300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389	2810.7	3074.5	8.2172
500 35.680 3132.9 3489.7 9.8998 7.1338 312.6 3489.3 9.1566 3.655.7 312.2 3488.7 8.8363 600 40.259 330.3 3706.5 10.163 8.077 330.1 3706.0 9.4201 800 49.527 3665.4 4160.6 10.6312 9.9047 3665.2 4160.4 9.883 4.9519 3665.0 4160.2 9.584 900 54.133 3856.5 4398.2 10.000 5.8758 4055.3 442.6 10.898 10.04897 6.3372 4259.8 4893.6 10.6487 1000 6.3374 4260.0 4993.8 11.6291 14.7470.8 510.7 10.6704 6.3372 4258.8 4893.6 10.0487 1200 67.389 4470.9 510.8 1.131.4 11.5207 14.700 10.5472 7.2607 0.4088 2664.4 2752.8 6.9301 1300 1.3662 2291.1 2769.1 7.2691 0.2928 266	400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027	2968.3	3278.6	8.5452
600 40.296 3303.3 3706.3 10.1631 8.0577 3303.1 3706.0 9.4201 4.0279 3302.8 3705.6 9.94201 800 49.527 3665.4 4160.6 10.6312 9.9047 3665.2 4160.4 9.8883 4.9519 3665.0 4160.2 9.5682 900 54.143 3856.9 4398.1 10.8280 3865.8 4398.2 10.000 5.8755 4055.0 642.6 9.9800 1000 53.73 4260.0 4893.8 11.4132 13.5977 4470.8 5150.7 16.6704 6.3784 4470.7 5150.6 10.529 100 7.2604 4867.7 7.210 0.60582 2543.2 2724.9 6.9917 0.46242 2553.1 2738.1 6.8955 150 0.9596 2577.1 2761.1 7.261.2 7.0792 0.4708 2564.4 2752.8 6.9301 001 1.81692 2808.8 3072.1 7.801 0.7642.2 2553.1 2738.1	500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	8.8362
700 44.911 3480.8 3929.9 10.4056 8.9813 3480.6 3929.7 9.6626 4.900 3480.4 3929.4 9.3424 900 54.143 3866.9 4398.3 10.820 3856.8 4398.2 10.000 5.875 4055.3 4642.6 9.980 1000 58.758 4055.3 4642.8 11.7513 4055.2 4642.7 10.000 5.8755 4055.0 4642.6 9.9800 1000 63.737 4250.4 4433.7 10.8497 6.3322 4259.8 8493.6 10.4497 6.3322 4259.8 8493.6 10.450 1300 72.604 4687.4 541.3 11.8567 14.5209 4687.3 541.3 10.842 7.2605 4687.2 541.3 10.529 264 0.8958 257.7 7.5081 0.71643 2651.0 2665.7 7.312 0.5344 267.2 273.8 6.9306 200 1.8867 2529.1 276.17 7.5081 0.71643 2651.0 2665.7 7.312 0.53434 264.72 2860.9 7.1732	600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279	3302.8	3705.6	9.0999
800 49.527 3665.4 4160.6 10.6312 9.9047 3665.2 4160.4 9.8883 4.9513 3665.0 4160.2 9.5875 1000 58.758 4055.3 4642.8 11.0429 11.7513 4055.2 4642.7 10.3000 5.8755 4055.0 4642.6 9.9800 1100 63.373 4260.0 4893.8 11.2326 12.6745 4259.9 4893.7 10.4897 5.3372 4259.8 4893.6 10.1000 1200 67.989 470.70 5150.6 11.61.70 P = 0.40 MPa (143.61°C) P = 0.30 MPa (133.52°C) P = 0.40 MPa (143.61°C) Xat 0.88578 2529.1 2706.3 7.1270 0.60582 2543.2 272.9 6.9917 0.46242 2553.1 2738.1 6.8955 150 0.95986 277.1 276.01 7.7184 265.9 7.3132 0.5344 267.42 2860.9 7.737 0.66442 255.8 7.3304 0.9592 7.726.4 8.930 17.1257 7.903 <	700	44.911	3480.8	3929.9	10.4056	8.9813	3480.6	3929.7	9.6626	4.4900	3480.4	3929.4	9.3424
900 54.143 3856.9 4398.3 10.8429 10.8280 3856.8 4398.2 10.1000 58.754 4055.3 4642.8 11.0100 58.754 4055.0 4642.6 9.800 58.754 4055.0 4642.6 9.800 58.754 4055.0 4642.6 9.800 58.754 4055.0 4642.6 9.800 58.754 4055.0 4642.6 9.800 58.754 4055.0 4642.7 10.300 58.754 4055.0 4642.7 10.300 58.754 4055.0 4642.7 10.300 58.754 4057.2 58.10 58.754 4259.9 48.87.3 10.8429 7.2605 468.7.2 51.00 10.325 10.352 7.332 0.53342 264.7.2 28.09 7.1723 10.8592 272.4 90.9731.4 271.2 7.300 0.79645 272.89 90.9731.4 286.9 7.132 0.53434 264.7.2 286.9 7.132 0.54842 280.51 30.671 7.5677 0.0 1.31623 2808.8 3072.1	800	49.527	3665.4	4160.6	10.6312	9.9047	3665.2	4160.4	9.8883	4.9519	3665.0	4160.2	9.5682
1000 58,758 4055.3 4042.6 9.9800 1000 63.373 4260.0 4983.8 10.4897 6.3372 425.9.8 4933.6 10.1693 1200 67.989 4470.9 5150.8 11.4132 13.5977 4470.8 5150.7 10.6704 6.7988 4470.7 5150.6 10.3504 1300 72.604 4687.4 5413.4 11.5857 14.5209 4687.3 5413.3 10.8429 7.2605 4687.2 5413.3 10.5229 P 0.20 MPa (120.21°C) P 0.60582 2543.2 2724.9 6.9917 0.46242 2553.1 2738.1 6.8955 150 0.95986 257.1 27601 7.5081 0.71643 261.0 2865.9 7.3132 0.53434 2664.9 277.9 2860.9 7.7232 0.65489 2805.1 3067.1 7.5677 000 1.54934 2967.2 3704.0 8.5915 1.00558 301.0 373.9 7.9003 1000 1.54934 2967.2 3707.9 8.2731 1.3819 331.6 374.9	900	54.143	3856.9	4398.3	10.8429	10.8280	3856.8	4398.2	10.1000	5.4137	3856.7	4398.0	9./800
1100 63.373 4260.0 4893.8 11.2226 12.6745 4259.9 4259.9 4493.7 10.6704 6.372 4259.8 4470.7 5150.6 10.506 11.257.0 10.506	1000	58./58	4055.3	4642.8	11.0429	11./513	4055.2	4642.7	10.3000	5.8/55	4055.0	4642.6	9.9800
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1100	63.373	4260.0	4893.8	11.2326	12.6/45	4259.9	4893.7	10.4897	6.3372	4259.8	4893.6	10.1698
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1200	67.989	4470.9	5150.8	11.4132	13.5977	44/0.8	5150.7	10.6704	6.7988	44/0./	5150.6	10.3504
$P = 0.20 \text{ MPa} (120.21^{\circ})$ $P = 0.30 \text{ MPa} (133.52^{\circ})$ $P = 0.40 \text{ MPa} (143.61^{\circ})$ Sat.0.885782529.12706.37.12700.605822543.22724.96.99170.462422553.12738.16.89551500.959862577.12769.17.28100.634022571.02761.27.07920.470882564.42752.86.93072501.198902731.42971.27.71000.796452728.92967.97.151800.595202726.42964.57.38043001.316232808.83072.17.89410.875352807.03069.67.70370.654892805.13067.17.56774001.549342967.23277.08.22361.031552966.03275.58.03440.772652964.93273.97.90035001.781423131.43487.78.51531.186723130.63704.08.59151.005583301.03703.38.45807002.24434349.99.2289.24791.650043664.34159.39.06051.23703686.34159.89.2779002.705653664.74159.89.24791.650043664.54159.39.22751.352983855.74396.99.139410002.937554054.84642.39.65911.966244158.44259.24892.99.529512003.630264687.1513.11.020292.246244470.35150.2	1300	/2.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.5229
Sat. 0.88578 2529.1 2706.3 7.1270 0.60582 2543.2 2724.9 6.9917 0.46242 2553.1 2738.1 6.8955 150 0.59586 2577.1 2769.1 7.2810 0.63402 2571.0 2761.2 7.0732 0.47088 2564.4 2752.8 6.9304 200 1.08049 2654.6 2870.7 7.5081 0.71643 2651.0 2865.9 7.3132 0.53434 2647.2 2860.9 7.1723 300 1.31632 2808.8 3072.1 7.8941 0.87535 2807.0 3069.6 7.7037 0.65489 2805.1 3067.1 7.5677 400 1.5412 3131.4 3487.7 8.153 1.18672 3130.6 370.0 8.5951 1.00558 3301.0 370.3 8.485.5 8.1933 500 2.4434 3479.9 3928.8 9.0221 1.49580 3479.5 3926.3 1.2152 3473.0 370.3 8.271 0.70565 3856.3		P =	0.20 MP	a (120.22	1°C)	P =	0.30 MPa	P = 0.40 MPa (143.61°C)					
1500.959862577.12769.17.28100.634022571.02761.27.07920.470882664.42752.86.93062001.080492654.62870.77.50810.716432651.02865.97.31320.534342647.22860.97.17232501.198902731.42971.27.71000.796452728.92967.97.51800.595202726.42964.57.38043001.316232808.83072.17.89410.875352807.03069.67.70370.654892805.13067.17.56774001.549342967.23277.08.22361.031552966.03275.58.03470.772652964.93273.97.90035001.781423131.43487.78.51531.186723130.63406.68.32710.88936312.9.83485.58.19336002.013023302.23704.88.77931.341393301.63704.08.59151.1005583301.03703.38.45807002.244533479.99.2288.83451.121523479.0927.68.70128002.475503664.74159.89.24791.650043664.34159.39.06051.237303663.94158.98.92749002.97655365.44397.79.45981.804173856.04397.39.27251.352983855.74396.99.139410002.976554054.84642.3<	Sat.	0.88578	2529.1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2 2553.1	2738.1	6.8955
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150	0.95986	2577.1	2769.1	7.2810	0.63402	2571.0	2761.2	7.0792	0.47088	3 2564.4	2752.8	6.9306
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	1.08049	2654.6	2870.7	7.5081	0.71643	2651.0	2865.9	7.3132	0.53434	2647.2	2860.9	7.1723
300 1.31623 2808.8 3072.1 7.8941 0.87535 2807.0 3069.6 7.7037 0.66489 2805.1 3067.1 7.5677 400 1.54934 2967.2 3277.0 8.2236 1.03155 2966.0 3275.5 80.347 0.77265 2964.9 3273.9 7.9003 500 1.78142 3131.4 3487.7 8.5153 1.18672 3130.6 3486.6 8.3271 0.88936 3129.8 3485.5 8.1933 600 2.24434 3479.9 3928.8 9.0221 1.49580 3479.5 3928.2 8.8345 1.12152 3479.0 3927.6 8.7012 800 2.47550 3664.7 4159.8 9.4479 1.65004 3664.3 4159.3 9.0605 1.23703 3663.9 4158.9 8.9274 900 2.70556 3856.3 4397.7 9.4598 1.80417 3856.0 4397.3 9.2725 1.35298 3855.7 436.9 9.1394 1000 3.16848 4259.6 4893.3 9.8497 2.11226 4259.4 4893.1 9.6624 <td>250</td> <td>1.19890</td> <td>2731.4</td> <td>2971.2</td> <td>7.7100</td> <td>0.79645</td> <td>2728.9</td> <td>2967.9</td> <td>7.5180</td> <td>0.59520</td> <td>2726.4</td> <td>2964.5</td> <td>7.3804</td>	250	1.19890	2731.4	2971.2	7.7100	0.79645	2728.9	2967.9	7.5180	0.59520	2726.4	2964.5	7.3804
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	300	1.31623	2808.8	3072.1	7.8941	0.87535	2807.0	3069.6	7.7037	0.65489	9 2805.1	3067.1	7.5677
$ \begin{array}{c} 500 & 1.78142 & 3131.4 & 3487.7 & 8.5153 \\ 500 & 2.01302 & 3302.2 & 3704.8 & 8.7793 \\ 500 & 2.24434 & 3479.9 & 3928.8 & 9.0221 \\ 1.49580 & 3479.5 & 3928.2 & 8.8345 \\ 1.2152 & 3479.0 & 3927.6 & 8.7012 \\ 800 & 2.47550 & 3664.7 & 4159.8 & 9.2479 \\ 1.65004 & 3664.3 & 4159.3 & 9.0605 \\ 2.47550 & 3664.7 & 4159.8 & 9.2479 \\ 1.65004 & 3664.3 & 4159.3 & 9.0605 \\ 1.23730 & 3663.9 & 4158.9 & 8.9274 \\ 900 & 2.70656 & 3856.3 & 4397.7 & 9.4598 \\ 1.80417 & 3856.0 & 4397.3 & 9.2725 \\ 1.36298 & 3855.7 & 4396.9 & 9.1394 \\ 1000 & 2.93755 & 4054.8 & 4642.3 & 9.6599 \\ 1.95824 & 4054.5 & 4642.0 & 9.4726 \\ 1.46859 & 4054.3 & 4641.7 & 9.3396 \\ 1100 & 3.16848 & 4259.6 & 4893.3 & 9.8497 \\ 2.11226 & 4259.4 & 4893.1 & 9.6624 \\ 1.58414 & 4259.2 & 4892.9 & 9.5295 \\ 1200 & 3.39938 & 4470.5 & 5150.4 & 10.0304 \\ 2.26624 & 4470.3 & 5150.2 & 9.8431 \\ 1.69966 & 4470.2 & 5150.0 & 9.7102 \\ 3.63026 & 4687.1 & 5413.1 & 10.2029 \\ 2.42019 & 4686.9 & 5413.0 & 10.0157 \\ 1.81516 & 4686.7 & 5412.8 & 9.8828 \\ \hline P = 0.50 MPa (151.83^{\circ}C) P = 0.60 MPa (158.83^{\circ}C) P = 0.80 MPa (170.41^{\circ}C) \\ \hline Sat. & 0.37483 & 2560.7 & 2748.1 & 6.8207 \\ 0.37483 & 2560.7 & 2748.1 & 6.8207 \\ 0.35212 & 2639.4 & 2850.6 & 6.9683 \\ 0.26088 & 2631.1 & 2839.8 & 6.8177 \\ 250 & 0.47443 & 2723.8 & 2961.0 & 7.2725 \\ 0.37483 & 2560.7 & 2748.1 & 6.8207 \\ 0.35212 & 2639.4 & 2850.6 & 6.9683 \\ 0.26088 & 2631.1 & 2839.8 & 6.8177 \\ 250 & 0.47443 & 2723.8 & 2961.0 & 7.2725 \\ 0.39390 & 2721.2 & 2957.6 & 7.1833 \\ 0.29212 1715.9 & 2950.4 & 7.0402 \\ 300 & 0.52261 & 2803.3 & 3064.6 & 7.4614 \\ 0.43442 & 2801.4 & 3062.0 & 7.3740 \\ 0.29321 2715.9 & 2950.4 & 7.0402 \\ 300 & 0.52661 & 2803.3 & 3064.6 & 7.4614 \\ 0.43422 & 2801.4 & 3062.0 & 7.3740 \\ 0.32416 & 2797.5 & 3056.9 & 7.2345 \\ 350 & 0.57015 & 283.0 & 3168.1 & 7.6346 \\ 0.47428 & 2881.6 & 3166.1 & 7.5481 \\ 0.35442 & 2878.6 & 6162.2 & 7.4107 \\ 0.089696 & 3478.6 & 3927.0 & 8.5978 \\ 0.74725 & 3478.1 & 3926.4 & 8.5132 \\ 0.56011 & 3477.2 & 3925.3 & 8.3794 \\ 800 & 0.98966 & 3663.6 & 4158.4 & 8.8240 \\ 0.9783 & 4053.8 & 4641.1 & 9.1521 \\ 0.73411 & $	400	1.54934	2967.2	3277.0	8.2236	1.03155	2966.0	3275.5	8.0347	0.77265	5 2964.9	3273.9	7.9003
600 2.01302 3302.2 3704.8 8.7793 1.34139 3301.6 3704.0 8.5915 1.00558 3301.0 3703.3 8.4580 700 2.24434 3479.9 3928.8 9.0221 1.49580 3479.5 3928.2 8.8345 1.12152 3479.0 3927.6 8.7012 800 2.47550 3664.7 4159.8 9.2479 1.65004 3664.3 4159.3 9.0605 1.23730 3663.9 4158.9 8.9274 900 2.70656 3856.3 4397.7 9.4598 1.80417 3856.0 4397.3 9.2725 1.35298 3855.7 4396.9 9.1394 1000 2.39755 4054.8 4642.3 9.6599 1.95824 4054.5 4642.0 9.4726 1.46859 4054.3 4641.7 9.3396 1100 3.16848 4259.6 4893.3 9.8497 2.11226 4259.4 4893.1 9.6624 1.58414 4259.2 4892.9 9.5295 1200 3.63026 4687.1 5413.1 10.2029 2.42019 4686.9 5413.0 10.015	500	1.78142	3131.4	3487.7	8.5153	1.18672	3130.6	3486.6	8.3271	0.88936	5 3129.8	3485.5	8.1933
7002.244343479.93928.89.02211.495803479.53928.28.83451.121523479.03927.68.70128002.475503664.74159.89.24791.650043664.34159.39.06051.237303663.94158.98.22749002.706563856.34397.79.45981.804173856.04397.39.27251.352983855.74396.99.139410002.937554054.84642.39.65991.958244054.54642.09.47261.468594641.79.339611003.168484259.64893.39.84972.112264259.44893.19.66241.584144259.24892.99.529512003.630264687.15413.110.02092.420194686.95413.010.01571.815164686.75412.89.8828 $P = 0.50$ MPa (151.83°C) $P = 0.60$ MPa (158.83°C) $P = 0.80$ $P = 0.80$ MPa (170.41°C)Sat.0.374832560.72748.16.82070.351202639.42850.66.96830.260882631.12839.86.81772500.474432723.82961.07.27250.393002721.22957.67.18330.292122715.92950.47.04023000.522612803.33064.67.46140.434422801.43062.07.37400.32416279.75.3555000.71052883.03168.17.6346 </td <td>600</td> <td>2.01302</td> <td>3302.2</td> <td>3704.8</td> <td>8.7793</td> <td>1.34139</td> <td>3301.6</td> <td>3704.0</td> <td>8.5915</td> <td>1.00558</td> <td>3 3301.0</td> <td>3703.3</td> <td>8.4580</td>	600	2.01302	3302.2	3704.8	8.7793	1.34139	3301.6	3704.0	8.5915	1.00558	3 3301.0	3703.3	8.4580
8002.475503664.74159.89.24791.650043664.34159.39.06051.237303663.94158.98.92749002.706563856.34397.79.45981.804173856.04397.39.27251.352983855.74396.99.139410002.937554054.84642.39.65991.958244054.54642.09.47261.468594054.34641.79.339611003.168484259.64893.39.84972.112264259.44893.19.66241.584144259.24952.99.529512003.630264687.15413.110.02022.420194686.95413.010.01571.815164686.75412.89.8828 $P = 0.50$ MPa (151.83°C) $P = 0.60$ MPa (158.83°C) $P = 0.80$ $P = 0.80$ MPa (170.41°C)Sat.0.374832560.72748.16.82070.315602566.82756.26.75930.240352576.02768.36.66162000.425032643.32855.87.06100.352122639.42850.66.06830.260882631.12839.86.81772500.474432723.82961.07.27250.339302721.22957.67.18330.293212715.92950.47.04023000.522612803.33064.67.46140.434422801.43062.07.37400.324162797.53056.97.23453500.570152883.	700	2.24434	3479.9	3928.8	9.0221	1.49580	3479.5	3928.2	8.8345	1.12152	2 3479.0	3927.6	8.7012
9002.706563856.34397.79.45981.804173856.04397.39.27251.352983855.74396.99.139410002.937554054.84642.39.65991.958244054.54642.09.47261.468594642.34641.79.339611003.168484259.64893.39.84972.112264259.44893.19.66241.584144259.24892.99.529512003.399384470.55150.410.03042.266244470.35150.29.84311.699664470.25150.09.710213003.630264687.15413.110.20292.420194686.95413.010.01571.815164686.75412.89.8828 $P = 0.50$ MPa (151.83°C) $P = 0.60$ $P = 0.60$ MPa (158.83°C) $P = 0.80$ $P = 0.80$ MPa (170.41°C)Sat.0.374832560.72748.16.82070.315602566.82756.26.75930.240352576.02768.36.66162000.425032643.32855.87.06100.352122639.42850.66.96830.260882631.12839.86.81772500.474432723.82961.07.27250.393902721.22957.67.18330.293212715.92950.47.04023000.522612803.33064.67.46140.434422801.43062.07.37400.324162777.53056.97.2345350	800	2.47550	3664.7	4159.8	9.2479	1.65004	3664.3	4159.3	9.0605	1.23730	3663.9	4158.9	8.9274
10002.937554054.84642.39.65991.958244054.54642.09.47261.468594054.34641.79.339611003.168484259.64893.39.84972.112264259.44893.19.66241.584144259.24892.99.529512003.399384470.55150.410.03042.266244470.35150.29.84311.699664470.25150.09.710213003.630264687.15413.110.20292.420194686.95413.010.01571.815164686.75412.89.8828 $P = 0.50$ MPa (151.83°C) $P = 0.60$ MPa (158.83°C) $P = 0.80$ MPa (170.41°C)Sat.0.374832560.72748.16.82070.315602566.82756.26.75930.240352576.02768.36.66162000.425032643.32855.87.06100.352122639.42850.66.96830.260882631.12839.86.81772500.474432723.82961.07.27250.393902721.22957.67.18330.29321<2715.9	900	2.70656	3856.3	4397.7	9.4598	1.80417	3856.0	4397.3	9.2725	1.35298	3 3855.7	4396.9	9.1394
11003.168484259.64893.39.84972.112264259.44893.19.66241.584144259.24892.99.529512003.399384470.55150.410.03042.266244470.35150.29.84311.699664470.25150.09.710213003.630264687.15413.110.20292.420194686.95413.010.01571.815164686.75412.89.8828 $P = 0.50$ MPa (151.83°C) $P = 0.60$ MPa (158.83°C) $P = 0.80$ MPa (170.41°C)Sat.0.374832560.72748.16.82070.315602566.82756.26.75930.240352576.02768.36.66162000.425032643.32855.87.06100.352122639.42850.66.96830.26088203112.92950.47.04023000.522612803.33064.67.46140.434422801.43062.07.37400.324162797.53056.97.23453500.570152883.03168.17.63460.474282881.63166.17.54810.35442287.63162.27.41074000.617312963.73272.47.79560.513742962.53270.87.70970.384292960.23267.77.57355000.710953129.03484.58.08930.592003128.2348.348.00410.443323126.63481.37.86926000.804093300.43702.58.35	1000	2.93755	4054.8	4642.3	9.6599	1.95824	4054.5	4642.0	9.4726	1.46859	9 4054.3	4641.7	9.3396
12003.399384470.55150.410.03042.266244470.35150.29.84311.699664470.25150.09.710213003.630264687.15413.110.20292.420194686.95413.010.01571.815164686.75412.89.8828 $P = 0.50$ MPa (151.83°C) $P = 0.60$ MPa (158.83°C) $P = 0.80$ MPa (170.41°C)Sat.0.374832560.72748.16.82070.315602566.82756.26.75930.240352576.02768.36.66162000.425032643.32855.87.06100.352122639.42850.66.96830.260882631.12839.86.81772500.474432723.82961.07.27250.393902721.22957.67.18330.293212715.92950.47.04023000.522612803.33064.67.46140.434422801.43062.07.37400.324162797.53056.97.23453500.570152883.03168.17.63460.474282881.63166.17.54810.354422878.63162.27.41074000.617312963.73272.47.79560.513742962.53270.87.0970.384292960.23267.77.57355000.71095312.903484.58.08930.592003128.2348.48.00410.443323126.63481.37.86926000.804093300.43702.58.35440.669	1100	3.16848	4259.6	4893.3	9.8497	2.11226	4259.4	4893.1	9.6624	1.58414	4259.2	4892.9	9.5295
1300 3.63026 4687.1 5413.1 10.2029 2.42019 4686.9 5413.0 10.0157 1.81516 4686.7 5412.8 9.8828 $P = 0.50$ MPa (151.83°C) $P = 0.60$ MPa (158.83°C) $P = 0.80$ MPa (170.41°C)Sat. 0.37483 2560.7 2748.1 6.8207 0.31560 2566.8 2756.2 6.7593 0.24035 2576.0 2768.3 6.6616 200 0.42503 2643.3 2855.8 7.0610 0.35212 2639.4 2850.6 6.9683 0.26088 2631.1 2839.8 6.8177 250 0.47443 2723.8 2961.0 7.2725 0.39390 2721.2 2957.6 7.1833 0.29321 2715.9 2950.4 7.0402 300 0.52261 2803.3 3064.6 7.4614 0.43442 2801.4 3062.0 7.3740 0.32416 2797.5 3056.9 7.2345 350 0.57015 2883.0 3168.1 7.6346 0.47428 2881.6 3166.1 7.5481 0.35442 287.6 3162.2 7.4107 400 0.61731 2963.7 327.4 7.7956 0.51374 2962.5 3270.8 7.7097 0.38429 2960.2 326.7 7.5735 500 0.71095 3129.0 3484.5 8.0893 0.59200 3128.2 3483.4 8.0041 0.44332 3126.6 3481.3 7.8692 600 0.80409 3300.4 3702.5 <	1200	3.39938	4470.5	5150.4	10.0304	2.26624	4470.3	5150.2	9.8431	1.69966	6 4470.2	5150.0	9.7102
$P = 0.50 \text{ MPa} (151.83^{\circ}\text{C})$ $P = 0.60 \text{ MPa} (158.83^{\circ}\text{C})$ $P = 0.80 \text{ MPa} (170.41^{\circ}\text{C})$ Sat. $0.37483 2560.7 2748.1 6.8207$ $0.31560 2566.8 2756.2 6.7593$ $0.24035 2576.0 2768.3 6.6616$ 200 $0.42503 2643.3 2855.8 7.0610$ $0.35212 2639.4 2850.6 6.9683$ $0.26088 2631.1 2839.8 6.8177$ 250 $0.47443 2723.8 2961.0 7.2725$ $0.39390 2721.2 2957.6 7.1833$ $0.29321 2715.9 2950.4 7.0402$ 300 $0.52261 2803.3 3064.6 7.4614$ $0.43442 2801.4 3062.0 7.3740$ $0.32416 2797.5 3056.9 7.2345$ 350 $0.57015 2883.0 3168.1 7.6346$ $0.47428 2881.6 3166.1 7.5481$ $0.35442 2878.6 3162.2 7.4107$ 400 $0.61731 2963.7 3272.4 7.7956$ $0.51374 2962.5 3270.8 7.7097$ $0.38429 2960.2 3267.7 7.5735$ 500 $0.71095 3129.0 3484.5 8.0893$ $0.59200 3128.2 3483.4 8.0041$ $0.44332 3126.6 3481.3 7.8692$ 600 $0.80409 3300.4 3702.5 8.3544$ $0.66976 3299.8 3701.7 8.2695$ $0.5011 3477.2 3925.3 8.3794$ 800 $0.98966 3663.6 4158.4 8.8240$ $0.82457 3663.2 4157.9 8.7395$ $0.61820 3662.5 4157.0 8.6061$ 900 $1.08227 3855.4 4396.6 9.0362$ $0.90179 3855.1 4396.2 8.9518$ $0.67619 3854.5 4395.5 8.8185$ 1000 $1.17480 4054.0 4641.4 9.2364$ $0.97893 4053.8 4641.1 9.1521$ $0.73411 4053.3 4640.5 9.0189$ 1100 $1.26728 4259.0 4892.6 9.4263$ $1.05603 4258.8 4892.4 9.3420$ $0.79197 4258.3 4891.9 9.2090$ 1200 $1.35972 4470.0 5149.8 9.6071$ $1.13309 4469.8 5149.6 9.5229$ $0.84980 4469.4 514.9.3 9.3898$	1300	3.63026	4687.1	5413.1	10.2029	2.42019	4686.9	5413.0	10.0157	1.81516	5 4686.7	5412.8	9.8828
Sat.0.374832560.72748.16.82070.315602566.82756.26.75930.240352576.02768.36.66162000.425032643.32855.87.06100.352122639.42850.66.96830.260882631.12839.86.81772500.474432723.82961.07.27250.393902721.22957.67.18330.293212715.92950.47.04023000.522612803.33064.67.46140.434422801.43062.07.37400.324162797.53056.97.23453500.570152883.03168.17.63460.474282881.63166.17.54810.354422878.63162.27.41074000.617312963.73272.47.79560.513742962.53270.87.70970.384292960.23267.77.57355000.710953129.03484.58.08930.592003128.23483.48.00410.443323126.63481.37.86926000.804093300.43702.58.35440.669763299.83701.78.26950.501863298.73700.18.13547000.896963478.63927.08.59780.747253478.13926.48.51320.560113477.23925.38.37948000.989663663.64158.48.2400.824573663.24157.98.73950.618203662.54157.08.6061 <td></td> <td>P =</td> <td>0.50 MP</td> <td>a (151.83</td> <td>3°C)</td> <td><i>P</i> =</td> <td>0.60 MPa</td> <td>(158.83</td> <td>°C)</td> <td><i>P</i> =</td> <td>0.80 MPa</td> <td>a (170.4)</td> <td>1°C)</td>		P =	0.50 MP	a (151.83	3°C)	<i>P</i> =	0.60 MPa	(158.83	°C)	<i>P</i> =	0.80 MPa	a (170.4)	1°C)
2000.425032643.32855.87.06100.352122639.42850.66.96830.260882631.12839.86.81772500.474432723.82961.07.27250.393902721.22957.67.18330.293212715.92950.47.04023000.522612803.33064.67.46140.434422801.43062.07.37400.324162797.53056.97.23453500.570152883.03168.17.63460.474282881.63166.17.54810.354422878.63162.27.41074000.617312963.73272.47.79560.513742962.53270.87.70970.384292960.23267.77.57355000.710953129.03484.58.08930.592003128.23483.48.00410.443323126.63481.37.86926000.804093300.43702.58.35440.669763299.83701.78.26950.501863298.73700.18.13547000.896963478.63927.08.59780.747253478.13926.48.51320.561113477.23925.38.37948000.989663663.64158.48.82400.824573663.24157.98.73950.618203662.54157.08.60619001.082273855.44396.69.03620.901793855.14396.28.95180.676193854.54395.58.8185 <td>Sat.</td> <td>0.37483</td> <td>2560.7</td> <td>2748.1</td> <td>6.8207</td> <td>0.31560</td> <td>2566.8</td> <td>2756.2</td> <td>6.7593</td> <td>0.24035</td> <td>5 2576.0</td> <td>2768.3</td> <td>6.6616</td>	Sat.	0.37483	2560.7	2748.1	6.8207	0.31560	2566.8	2756.2	6.7593	0.24035	5 2576.0	2768.3	6.6616
2500.474432723.82961.07.27250.393902721.22957.67.18330.293212715.92950.47.04023000.522612803.33064.67.46140.434422801.43062.07.37400.324162797.53056.97.23453500.570152883.03168.17.63460.474282881.63166.17.54810.354422878.63162.27.41074000.617312963.73272.47.79560.513742962.53270.87.70970.384292960.23267.77.57355000.710953129.03484.58.08930.592003128.23483.48.00410.443323126.63481.37.86926000.804093300.43702.58.35440.669763299.83701.78.26950.501863298.73700.18.13547000.896963478.63927.08.59780.747253478.13926.48.51320.560113477.23925.38.37948000.989663663.64158.48.82400.824573663.24157.98.73950.618203662.54157.08.60619001.082273855.44396.69.03620.901793855.14396.28.95180.676193854.54395.58.818510001.174804054.04641.49.23640.978934053.84641.19.15210.734114053.34640.59.0189 </td <td>200</td> <td>0.42503</td> <td>2643.3</td> <td>2855.8</td> <td>7.0610</td> <td>0.35212</td> <td>2639.4</td> <td>2850.6</td> <td>6.9683</td> <td>0.26088</td> <td>3 2631.1</td> <td>2839.8</td> <td>6.8177</td>	200	0.42503	2643.3	2855.8	7.0610	0.35212	2639.4	2850.6	6.9683	0.26088	3 2631.1	2839.8	6.8177
3000.522612803.33064.67.46140.434422801.43062.07.37400.324162797.53056.97.23453500.570152883.03168.17.63460.474282881.63166.17.54810.354422878.63162.27.41074000.617312963.73272.47.79560.513742962.53270.87.70970.384292960.23267.77.57355000.710953129.03484.58.08930.592003128.23483.48.00410.443323126.63481.37.86926000.804093300.43702.58.35440.669763299.83701.78.26950.501863298.73700.18.13547000.896963478.63927.08.59780.747253478.13926.48.51320.560113477.23925.38.37948000.989663663.64158.48.82400.824573663.24157.98.73950.618203662.54157.08.60619001.082273855.44396.69.03620.901793855.14396.28.95180.676193854.54395.58.818510001.174804054.04641.49.23640.978934053.84641.19.15210.734114053.34640.59.018911001.267284259.04892.69.42631.056034258.84892.49.34200.791974258.34891.99.2090<	250	0.47443	2723.8	2961.0	7.2725	0.39390	2721.2	2957.6	7.1833	0.29321	2715.9	2950.4	7.0402
3500.570152883.03168.17.63460.474282881.63166.17.54810.354422878.63162.27.41074000.617312963.73272.47.79560.513742962.53270.87.70970.384292960.23267.77.57355000.710953129.03484.58.08930.592003128.23483.48.00410.443323126.63481.37.86926000.804093300.43702.58.35440.669763299.83701.78.26950.501863298.73700.18.13547000.896963478.63927.08.59780.747253478.13926.48.51320.560113477.23925.38.37948000.989663663.64158.48.82400.824573663.24157.98.73950.618203662.54157.08.60619001.082273855.44396.69.03620.901793855.14396.28.95180.676193854.54395.58.818510001.174804054.04641.49.23640.978934053.84641.19.15210.734114053.34640.59.018911001.267284259.04892.69.42631.056034258.84892.49.34200.791974258.34891.99.209012001.359724470.05149.89.60711.133094469.85149.69.52290.849804469.45149.39.3898	300	0.52261	2803.3	3064.6	7.4614	0.43442	2801.4	3062.0	7.3740	0.32416	5 2797.5	3056.9	7.2345
4000.617312963.73272.47.79560.513742962.53270.87.70970.384292960.23267.77.57355000.710953129.03484.58.08930.592003128.23483.48.00410.443323126.63481.37.86926000.804093300.43702.58.35440.669763299.83701.78.26950.501863298.73700.18.13547000.896963478.63927.08.59780.747253478.13926.48.51320.560113477.23925.38.37948000.989663663.64158.48.82400.824573663.24157.98.73950.618203662.54157.08.60619001.082273855.44396.69.03620.901793855.14396.28.95180.676193854.54395.58.818510001.174804054.04641.49.23640.978934053.84641.19.15210.734114053.34640.59.018911001.267284259.04892.69.42631.056034258.84892.49.34200.791974258.34891.99.209012001.359724470.05149.89.60711.133094469.85149.69.52290.849804469.45149.39.3898	350	0.57015	2883.0	3168.1	7.6346	0.47428	2881.6	3166.1	7.5481	0.35442	2 2878.6	3162.2	7.4107
5000.710953129.03484.58.08930.592003128.23483.48.00410.443323126.63481.37.86926000.804093300.43702.58.35440.669763299.83701.78.26950.501863298.73700.18.13547000.896963478.63927.08.59780.747253478.13926.48.51320.560113477.23925.38.37948000.989663663.64158.48.82400.824573663.24157.98.73950.618203662.54157.08.60619001.082273855.44396.69.03620.901793855.14396.28.95180.676193854.54395.58.818510001.174804054.04641.49.23640.978934053.84641.19.15210.734114053.34640.59.018911001.267284259.04892.69.42631.056034258.84892.49.34200.791974258.34891.99.209012001.359724470.05149.89.60711.133094469.85149.69.52290.849804469.45149.39.3898	400	0.61731	2963.7	3272.4	7.7956	0.51374	2962.5	3270.8	7.7097	0.38429	9 2960.2	3267.7	7.5735
6000.804093300.43702.58.35440.669763299.83701.78.26950.501863298.73700.18.13547000.896963478.63927.08.59780.747253478.13926.48.51320.560113477.23925.38.37948000.989663663.64158.48.82400.824573663.24157.98.73950.618203662.54157.08.60619001.082273855.44396.69.03620.901793855.14396.28.95180.676193854.54395.58.818510001.174804054.04641.49.23640.978934053.84641.19.15210.734114053.34640.59.018911001.267284259.04892.69.42631.056034258.84892.49.34200.791974258.34891.99.209012001.359724470.05149.89.60711.133094469.85149.69.52290.849804469.45149.39.3898	500	0.71095	3129.0	3484.5	8.0893	0.59200	3128.2	3483.4	8.0041	0.44332	2 3126.6	3481.3	7.8692
7000.896963478.63927.08.59780.747253478.13926.48.51320.560113477.23925.38.37948000.989663663.64158.48.82400.824573663.24157.98.73950.618203662.54157.08.60619001.082273855.44396.69.03620.901793855.14396.28.95180.676193854.54395.58.818510001.174804054.04641.49.23640.978934053.84641.19.15210.734114053.34640.59.018911001.267284259.04892.69.42631.056034258.84892.49.34200.791974258.34891.99.209012001.359724470.05149.89.60711.133094469.85149.69.52290.849804469.45149.39.3898	600	0.80409	3300.4	3702.5	8.3544	0.66976	3299.8	3701.7	8.2695	0.50186	5 3298.7	3700.1	8.1354
8000.989663663.64158.48.82400.824573663.24157.98.73950.618203662.54157.08.60619001.082273855.44396.69.03620.901793855.14396.28.95180.676193854.54395.58.818510001.174804054.04641.49.23640.978934053.84641.19.15210.734114053.34640.59.018911001.267284259.04892.69.42631.056034258.84892.49.34200.791974258.34891.99.209012001.359724470.05149.89.60711.133094469.85149.69.52290.849804469.45149.39.3898	700	0.89696	3478.6	3927.0	8.5978	0.74725	3478.1	3926.4	8.5132	0.56011	3477.2	3925.3	8.3794
9001.082273855.44396.69.03620.901793855.14396.28.95180.676193854.54395.58.818510001.174804054.04641.49.23640.978934053.84641.19.15210.734114053.34640.59.018911001.267284259.04892.69.42631.056034258.84892.49.34200.791974258.34891.99.209012001.359724470.05149.89.60711.133094469.85149.69.52290.849804469.45149.39.3898	800	0.98966	3663.6	4158.4	8.8240	0.82457	3663.2	4157.9	8.7395	0.61820	3662.5	4157.0	8.6061
10001.174804054.04641.49.23640.978934053.84641.19.15210.734114053.34640.59.018911001.267284259.04892.69.42631.056034258.84892.49.34200.791974258.34891.99.209012001.359724470.05149.89.60711.133094469.85149.69.52290.849804469.45149.39.3898	900	1.08227	3855.4	4396.6	9.0362	0.90179	3855.1	4396.2	8.9518	0.67619	3854.5	4395.5	8.8185
11001.267284259.04892.69.42631.056034258.84892.49.34200.791974258.34891.99.209012001.359724470.05149.89.60711.133094469.85149.69.52290.849804469.45149.39.3898	1000	1.17480	4054.0	4641.4	9.2364	0.97893	4053.8	4641.1	9.1521	0.73411	4053.3	4640.5	9.0189
1200 1.35972 4470.0 5149.8 9.6071 1.13309 4469.8 5149.6 9.5229 0.84980 4469.4 5149.3 9.3898	1100	1.26728	4259.0	4892.6	9.4263	1.05603	4258.8	4892.4	9.3420	0.79197	4258.3	4891.9	9.2090
	1200	1.35972	4470.0	5149.8	9.6071	1.13309	4469.8	5149.6	9.5229	0.84980) 4469.4	5149.3	9.3898
1300 1.45214 4686.6 5412.6 9.7797 1.21012 4686.4 5412.5 9.6955 0.90761 4686.1 5412.2 9.5625	1300	1.45214	4686.6	5412.6	9.7797	1.21012	4686.4	5412.5	9.6955	0.90761	4686.1	5412.2	9.5625

*The temperature in parentheses is the saturation temperature at the specified pressure.

[†] Properties of saturated vapor at the specified pressure.

Superheated water (Continued)												
Т	V	и	h	S	V	и	h	S	v	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K
	Р	= 1.00 M	Pa (179.8	8°C)	Р	= 1.20	MPa (187	.96°C)	P =	= 1.40 MP	a (195.0	 4°C)
Sat	0 19437	2582.8	2777 1	6 5850	0 16326	2587.8	2783.8	6 5217	0 14078	2591.8	2788.9	6 4675
200	0.20602	2622.3	2828.3	6.6956	0.16934	2612.9	2816.1	6.5909	0.14303	2602.7	2803.0	6.4975
250	0.23275	2710.4	2943.1	6.9265	0.19241	2704.7	2935.6	6.8313	0.16356	2698.9	2927.9	6.7488
300	0.25799	2793.7	3051.6	7.1246	0.21386	2789.7	3046.3	7.0335	0.18233	2785.7	3040.9	6.9553
350	0.28250	2875.7	3158.2	7.3029	0.23455	2872.7	3154.2	7.2139	0.20029	2869.7	3150.1	7.1379
400	0.30661	2957.9	3264.5	7.4670	0.25482	2955.5	3261.3	7.3793	0.21782	2953.1	3258.1	7.3046
500	0.35411	3125.0	3479.1	7.7642	0.29464	3123.4	3477.0	7.6779	0.25216	3121.8	3474.8	7.6047
600	0.40111	3297.5	3698.6	8.0311	0.33395	3296.3	3697.0	7.9456	0.28597	3295.1	3695.5	7.8730
700	0.44783	3476.3	3924.1	8.2755	0.37297	3475.3	3922.9	8.1904	0.31951	3474.4	3921.7	8.1183
800	0.49438	3661.7	4156.1	8.5024	0.41184	3661.0	4155.2	8.4176	0.35288	3660.3	4154.3	8.3458
900	0.54083	3853.9	4394.8	8.7150	0.45059	3853.3	4394.0	8.6303	0.38614	3852.7	4393.3	8.5587
1000	0.58721	4052.7	4640.0	8.9155	0.48928	4052.2	4639.4	8.8310	0.41933	4051.7	4638.8	8.7595
1100	0.63354	4257.9	4891.4	9.1057	0.52792	4257.5	4891.0	9.0212	0.45247	4257.0	4890.5	8.9497
1200	0.67983	4469.0	5148 9	9 2866	0 56652	4468 7	5148 5	9 2022	0 48558	4468.3	5148 1	9 1 3 0 8
1300	0.72610	4685.8	5411.9	9.4593	0.60509	4685.5	5411.6	9.3750	0.51866	4685.1	5411.3	9.3036
	P	= 1.60 M	Pa (201.3	7°C)	Р	= 1.80	MPa (207	.11°C)	P =	= 2.00 MP	a (212.3	 8°C)
Sat	0 12374	2594.8	2792.8	6.4200	0 11037	2597 3	2795	9 6 3775	0.09959	2599.1	2798 3	<pre> 6 3390</pre>
225	0.12074	2645 1	2857.8	6 5537	0 11678	2637.0) 2847	2 6 4 8 2 5	0.10381	2628 5	2836.1	6 4 1 6 0
250	0.10200	2692.9	2019.9	6 6753	0.12502	2686.7	, 2047. 2911	7 6 6088	0.11150	2680.3	2903 3	3 6 5475
300	0.15866	2781.6	3035.4	6 8864	0.12002	2777 4	3029	9 6 8246	0.12551	2773.2	3024 2	> 6 7684
350	0.17459	2866.6	3146.0	7 0713	0 15460	2863 6	3141	9 7 0120	0.13860	2860 5	3137 7	7 6 9583
400	0.17400	2950.8	3254.9	7 2394	0.15400	2948 3	3251	6 7 1814	0.15000	2945.9	3248.4	1 7 1 2 9 2
500	0.10007	3120.1	3472.6	7.5410	0.10045	3118 5	3470	<i>A</i> 7.4845	0.17568	3116.9	3468 3	3 7 4 3 3 7
600	0.22025	3293.9	3693.9	7 8101	0.13001	3292.7	, 3470. , 3692	3 7 7543	0.19962	3291 5	3690.5	7 7 7043
700	0.24999	3473 5	3920.5	8 0558	0.22200	3472 6	3919 3919	4 8 0005	0.15502	34717	3918 2	> 7 9509
800	0.20865	3659 5	4153.4	8 2834	0.27426	3658.8	A152	A 8 2284	0.24674	3658.0	4151 F	5 8 1791
900	0.33780	38521	4392.6	8 4965	0.27420	3851 5	, 4192. . 4391	9 8 4 4 1 7	0.24074	3850.9	4391.0	8 3925
1000	0.36687	4051.2	4638.2	8 6974	0.32606	4050.7	, 4001. 1637	6 8 6427	0.29342	4050.2	4637 1	8 5936
1100	0.30007	4051.2	4030.2 1890 0	8 8878	0.32000	4050.7	4037. 2 1880	6 8 8 3 3 1	0.20042	4050.2	/1880 1	8 78/2
1200	0.33303	4230.0	40 <i>5</i> 0.0	9 0689	0.33100	4230.2	51/7	3 9 01/3	0.31007	4255.7	51/7 () 8 9651
1300	0.42400	4684.8	5410.9	9 2418	0.37700	4407.0	5 5410	6 9 1872	0.35303	4684.2	5410 3	3 9 1 3 8 4
1500	0.40000	-0.50 M	0,000 0	5.2410	0.40041	2 00 1	UD- (000	05%0)	0.00000	2.50 MD	- (040 5	<u> </u>
<u>.</u>	P	= 2.50 M	Pa (223.9		P	= 3.00 1	VIPa (233	.85 ()	P =	= 3.50 IVIP	a (242.5	
Sat.	0.07995	2602.1	2801.9	6.2558 6.2629	0.06667	2603.2	2803.	2 6.1856	0.05706	2603.0	2802.7	6.1244
250	0.00020	2663.3	2880.9	6.4107	0 07063	2644 7	2856	5 6 2893	0.05876	2624.0	2829 7	7 6 1 7 6 4
200	0.00703	2003.3	2000.5	6.6450	0.07003	2044.7	2000.	3 6 5 1 1 2	0.05070	2024.0	2023.7	1 6 1 1 8 1
350	0.09094	2702.2	3127.0	6 8/2/	0.00110	2730.0	2994.	1 6 7 4 5 0	0.00040	2836.0	2970.4) 6 6601
400	0.10979	2032.3	3240.1	7 0170	0.03030	2044.4	- 3110. : 3231	7 6 0 2 3 5	0.07080	2030.0	3204.5) 6.8428
400	0.12012	2939.0	22516	7.0170	0.09930	29001.0) 2211	0.9233	0.00400	2927.2	2223.2	
400 500	0.13013	2112 0	2162 9	7 2254	0.10769	2109 6	2 2467	9 7.0000 0 7.0250	0.09190	2104 5	2451 7	7.0074
500	0.15999	2112.0 2200 F	3402.0	7.5204	0.11020	2205 5) 3437. : 3609	0 7 5102	0.09919	2104.0 2202 E	2670 0	7.1095
700	0.10901	3160 2	201E 0	7 9155	0.13245	3167 0) 2010 2010	0 7.0103	0.11323	31617	30/0.5	7 COEE
200 200	0.1/000	3656 0	1110 0	7.0400 8.0777	0.14041	3651 3	, JATT. 1 VIVE	2 7.709U	0.12/02	36525	J J J J J J J J J J J J J J J J J J J	7 0156
000	0.19/22	3030.2	4143.2	0.0744 0.0000	0.10420	2004.0	, 4140. 1207	2 7.3000 2 7.3000	0.14001	3002.0	4144.0	7 0 1 2 0 1
1000	0.2103/	J049.4	4203.2	0.2002 Q /007	0.17200	J047.5 A047.5	/ 430/. / 163/	0.2020 0 0.101E	0.10410	1016 1	4000.1	0.1304 7 Q 2201
1100	0.23400	4049.0 1261 7	4033.0	0.4071	0.19049	4047.7	4034. 1006	2 0.4040 7 8 5055	0.10/01	4040.4 1252 5	4032.1	0.3324
1200	0.2000	4204.7	-+007.9 5176 0	0.0004 8 8618	0.21100	4200.0	, 4000. 51/5	1 8 7771	0.10007	4202.0	5111 1	8 7052
1300	0.27130	4400.3	5140.0 5409 5	0 0310	0.22000	4400.0	5 5140.	8 8 0502	0.19420	4404.4 1621 2	5408 0	8 8786
1000	0.20040	1000.4	5-05.5	5.0045	0.24207	-002.0	, 5400.	0.002	0.20730	-001.0	5-00.0	0.0700

Superh	neated wat	er (<i>Conti</i>	nued)									
Т	V	и	h	S	V	и	h	S	v	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K
	Р	= 4.0 MF	Pa (250.35	5°C)	Р	= 4.5 MP	a (257.44°	°C)	P =	5.0 MPa	(263.94	°C)
Sat.	0.04978	2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	5.9737
275	0.05461	2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3	2839.5	6.0571
300	0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0	2925.7	6.2111
350	0.06647	2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5	3069.3	6.4516
400	0.07343	2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5	3196.7	6.6483
450	0.08004	3011.0	3331.2	6 9386	0.07076	3005.8	3324.2	6 8770	0.06332	3000.6	3317.2	6 8210
500	0.08644	3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8	3434.7	6.9781
600	0.09886	3279.4	3674.9	7.3706	0.08766	3276.4	3670.9	7 3127	0.07870	3273.3	3666.9	7 2605
700	0.00000	3462.4	3906 3	7 6214	0.007.00	3460.0	3903 3	7 5647	0.07070	3457.7	3900.3	7.5136
800	0.12292	3650.6	4142 3	7.8523	0.000000	3648.8	4140 0	7 7962	0.00002	3646.9	41377	7 7458
900	0.12252	3811 8	1383 0	8 0675	0.10510	38/13 3	/1382.1	8 0118	0.05010	38/18	/1380.2	7 9619
1000	0.10470	1015 1	4631.2	8 2698	0.11372	1013 Q	4502.1 1629 8	8 21 <i>11</i>	0.10705	10126	1628.3	8 16/18
1100	0.14033	404J.1 1251 1	4031.Z 1881 1	8/612	0.13020	4043.9 1250 1	4029.0	8 /060	0.11715	4042.0 1219 3	4020.3	8 3566
1200	0.15024	4251.4	51/2 2	8 6/30	0.14004	4230.4	51/22	8 5880	0.12000	4245.5	51/1 3	8 5388
1200	0.10352	4403.3	5407.2	8 8161	0.15105	4402.0	5106 5	8 7616	0.13392	4401.0	5405.7	8 712/
1300	0.10157	4000.9	J407.2	0.0104	0.10140	4080.1	5400.5	8.7010	0.14527	4079.3	5405.7	0.7124
	<i>P</i> = 6.0 MPa (275.59°C)					= 7.0 MP	<i>P</i> = 8.0 MPa (295.01°C)					
Sat.	0.03245	2589.9	2/84.6	5.8902	0.02/3/8	2581.0	2772.6	5.8148	0.023525	25/0.5	2/58./	5./450
300	0.03619	2668.4	2885.6	6.0703	0.029492	2633.5	2839.9	5.9337	0.024279	2592.3	2786.5	5.7937
350	0.04225	2790.4	3043.9	6.3357	0.035262	2770.1	3016.9	6.2305	0.029975	2748.3	2988.1	6.1321
400	0.04742	2893.7	3178.3	6.5432	0.039958	2879.5	3159.2	6.4502	0.034344	2864.6	3139.4	6.3658
450	0.05217	2989.9	3302.9	6.7219	0.044187	2979.0	3288.3	6.6353	0.038194	2967.8	3273.3	6.5579
500	0.05667	3083.1	3423.1	6.8826	0.048157	3074.3	3411.4	6.8000	0.041767	3065.4	3399.5	6.7266
550	0.06102	3175.2	3541.3	7.0308	0.051966	3167.9	3531.6	6.9507	0.045172	3160.5	3521.8	6.8800
600	0.06527	3267.2	3658.8	7.1693	0.055665	3261.0	3650.6	7.0910	0.048463	3254.7	3642.4	7.0221
700	0.07355	3453.0	3894.3	7.4247	0.062850	3448.3	3888.3	7.3487	0.054829	3443.6	3882.2	7.2822
800	0.08165	3643.2	4133.1	7.6582	0.069856	3639.5	4128.5	7.5836	0.061011	3635.7	4123.8	7.5185
900	0.08964	3838.8	4376.6	7.8751	0.076750	3835.7	4373.0	7.8014	0.067082	3832.7	4369.3	7.7372
1000	0.09756	4040.1	4625.4	8.0786	0.083571	4037.5	4622.5	8.0055	0.073079	4035.0	4619.6	7.9419
1100	0.10543	4247.1	4879.7	8.2709	0.090341	4245.0	4877.4	8.1982	0.079025	4242.8	4875.0	8.1350
1200	0.11326	4459.8	5139.4	8.4534	0.097075	4457.9	5137.4	8.3810	0.084934	4456.1	5135.5	8.3181
1300	0.12107	4677.7	5404.1	8.6273	0.103781	4676.1	5402.6	8.5551	0.090817	4674.5	5401.0	8.4925
	Р	= 9.0 MF	Pa (303.35	5°C)	P =	= 10.0 MF	Pa (311.00)°C)	<i>P</i> =	12.5 MPa	a (327.81	l°C)
Sat.	0.020489	9 2558.5	2742.9	5.6791	0.018028	2545.2	2725.5	5.6159	0.013496	2505.6	2674.3	5.4638
325	0.023284	1 2647.6	2857.1	5.8738	0.019877	2611.6	2810.3	5.7596				
350	0.025816	5 2725.0	2957.3	6.0380	0.022440	2699.6	2924.0	5.9460	0.016138	2624.9	2826.6	5.7130
400	0.029960	2849.2	3118.8	6.2876	0.026436	2833.1	3097.5	6.2141	0.020030	2789.6	3040.0	6.0433
450	0.033524	1 2956.3	3258.0	6.4872	0.029782	2944.5	3242.4	6.4219	0.023019	2913.7	3201.5	6.2749
500	0.036793	3 3056.3	3387.4	6.6603	0.032811	3047.0	3375.1	6.5995	0.025630	3023.2	3343.6	6.4651
550	0.039885	5 3153.0	3512.0	6.8164	0.035655	3145.4	3502.0	6.7585	0.028033	3126.1	3476.5	6.6317
600	0.042861	3248.4	3634.1	6 9605	0.038378	3242.0	3625.8	6 9045	0.030306	3225.8	3604.6	6 7828
650	0.045755	5 3343 4	3755.2	7 0954	0.041018	3338.0	3748.1	7 0408	0.032491	3324 1	3730.2	6 9227
700	0.048589	3438.8	3876 1	7.2229	0.043597	3434.0	3870.0	7.1693	0.034612	3422.0	3854.6	7.0540
800	0.054132	2 3632 0	4119.2	7 4606	0.048629	3628.2	4114 5	7 4085	0.038724	3618.8	4102 R	7 2967
900	0.059562	2 3829 6	4365.7	7 6802	0.053547	3826.5	4362.0	7 6290	0.042720	3818.9	4352.0	7 5195
1000	0.064910	40324	4616.7	7 8855	0.058391	4029.9	4613.8	7 8349	0.046641	4023 5	4606 5	7 7269
1100	0 07022/	1 4240 7	4872 7	8 0791	0.063183	4238 5	4870 3	8 0289	0.050510	4233 1	4864 5	7 9220
1200	0 075402	24454.2	51336	8 2625	0.067938	4452.4	51317	8 2126	0.054342	4447 7	5127 N	8 1065
1300	0 080733	3 4672 9	5399 5	8 4371	0 072667	4671 3	5398.0	8,3874	0.058147	4667 3	5394 1	8 2819
1000	0.000700	, TOT 2.J	5555.5	5.4071	5.072007	107 1.0	0000.0	0.007 -	5.000177	1007.0	5554.1	5.2015

TABLE	A6													
Super	heated wate	r (<i>Conclu</i>	ıded)											
Т	V	и	h	S	V	и	h	S	v	и	h	S		
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K		
	P =	15.0 MP	a (342.16	5°C)	P = 1	l7.5 MPa	(354.67	'°C)	P =	P = 20.0 MPa (365.75°C)				
Sat.	0.010341	2455.7	2610.8	5.3108	0.007932	2390.7	2529.5	5.1435	0.005862	2294.8	2412.1	4.9310		
350	0.011481	2520.9	2693.1	5.4438										
400	0.015671	2740.6	2975.7	5.8819	0.012463	2684.3	2902.4	5.7211	0.009950	2617.9	2816.9	5.5526		
450	0.018477	2880.8	3157.9	6.1434	0.015204	2845.4	3111.4	6.0212	0.012/21	2807.3	3061.7	5.9043		
500	0.020828	2998.4	3310.8	6.3480 6.5220	0.01/385	2972.4	32/0./	6.2424	0.014/93	2945.3	3241.2	6.1440 6.2200		
600	0.022945	3200.2	3450.4	6 6796	0.019303	3192.5	3423.0	6 5890	0.010571	3175 3	35390.2	6 5075		
650	0.024321	3310.1	3712.1	6.8233	0.022742	3295.8	3693.8	6.7366	0.019695	3281.4	3675.3	6.6593		
700	0.028621	3409.8	3839.1	6.9573	0.024342	3397.5	3823.5	6.8735	0.021134	3385.1	3807.8	6.7991		
800	0.032121	3609.3	4091.1	7.2037	0.027405	3599.7	4079.3	7.1237	0.023870	3590.1	4067.5	7.0531		
900	0.035503	3811.2	4343.7	7.4288	0.030348	3803.5	4334.6	7.3511	0.026484	3795.7	4325.4	7.2829		
1000	0.038808	4017.1	4599.2	7.6378	0.033215	4010.7	4592.0	7.5616	0.029020	4004.3	4584.7	7.4950		
1100	0.042062	4227.7	4858.6	7.8339	0.036029	4222.3	4852.8	7.7588	0.031504	4216.9	4847.0	7.6933		
1200	0.045279	4443.1	5122.3	8.0192	0.038806	4438.5	5117.6	7.9449	0.033952	4433.8	5112.9	7.8802		
1300	0.048469	4663.3	5390.3	8.1952	0.041556	4659.2	5386.5	8.1215	0.036371	4655.2	5382.7	8.05/4		
				<i>P</i> = 30.0) MPa		<i>P</i> = 35.0 MPa							
375	0.001978	1799.9	1849.4	4.0345	0.001792	1738.1	1791.9	3.9313	0.001701	1702.8	1762.4	3.8724		
400	0.006005	2428.5	2578.7	5.1400	0.002798	2068.9	2152.8	4.4758	0.002105	1914.9	1988.6	4.2144		
425	0.007886	2607.8	2805.0	5.4708	0.005299	2452.9	2611.8	5.1473	0.003434	2253.3	2373.5	4.7751		
450 500	0.0091/6	2/21.2	2950.6	5.6/59	0.006/3/	2618.9	2821.0	5.4422	0.004957	2497.5	26/1.0	5.1946		
500	0.011143	2007.3	3100.9	5.9045 6 1916	0.008091	2074.0	2070.7	5.7956	0.000933	2/00.5	2997.9	5.0002		
600	0.012730	3020.8	3493 5	6 3637	0.010175	3103.4	3446.8	6 2373	0.008348	3065.6	3399.0	6 1229		
650	0.015430	3251.9	3637.7	6.5243	0.012590	3221.7	3599.4	6.4074	0.010565	3190.9	3560.7	6.3030		
700	0.016643	3359.9	3776.0	6.6702	0.013654	3334.3	3743.9	6.5599	0.011523	3308.3	3711.6	6.4623		
800	0.018922	3570.7	4043.8	6.9322	0.015628	3551.2	4020.0	6.8301	0.013278	3531.6	3996.3	6.7409		
900	0.021075	3780.2	4307.1	7.1668	0.017473	3764.6	4288.8	7.0695	0.014904	3749.0	4270.6	6.9853		
1000	0.023150	3991.5	4570.2	7.3821	0.019240	3978.6	4555.8	7.2880	0.016450	3965.8	4541.5	7.2069		
1100	0.025172	4206.1	4835.4	7.5825	0.020954	4195.2	4823.9	7.4906	0.017942	4184.4	4812.4	7.4118		
1200	0.02/15/	4424.6	5103.5	7.7710	0.022630	4415.3	5094.2	7.6807	0.019398	4406.1	5085.0	7.6034		
1300	0.029115	4047.2	5375.1	7.9494	0.024279	4039.2	0307.0	7.8602	0.020827	4031.2	5360.2	7.7841		
		<i>P</i> = 40	.0 MPa			<i>P</i> = 50.0) MPa			<i>P</i> = 60	.0 MPa			
375	0.001641	1677.0	1742.6	3.8290	0.001560	1638.6	1716.6	3.7642	0.001503	1609.7	1699.9	3.7149		
400	0.001911	1855.0	1931.4	4.1145	0.001/31	1/8/.8	18/4.4	4.0029	0.001633	1/45.2	1843.2	3.9317		
425	0.002538	2097.5	2199.0	4.5044	0.002009	1960.3	2060.7	4.2740	0.001816	1892.9	2001.8	4.1630		
400 500	0.003092	2681.6	2011.0	4.9449 5.4744	0.002407	2528.1	2204.7	4.0090 5.1762	0.002080	2000.1	2100.2	4.4140		
550	0.005025	2875.1	3154.4	5 7857	0.0050118	2769.5	3025.4	5 5563	0.002952	2664.6	2901 9	5 3517		
600	0.008089	3026.8	3350.4	6.0170	0.006108	2947.1	3252.6	5.8245	0.004833	2866.8	3156.8	5.6527		
650	0.009053	3159.5	3521.6	6.2078	0.006957	3095.6	3443.5	6.0373	0.005591	3031.3	3366.8	5.8867		
700	0.009930	3282.0	3679.2	6.3740	0.007717	3228.7	3614.6	6.2179	0.006265	3175.4	3551.3	6.0814		
800	0.011521	3511.8	3972.6	6.6613	0.009073	3472.2	3925.8	6.5225	0.007456	3432.6	3880.0	6.4033		
900	0.012980	3733.3	4252.5	6.9107	0.010296	3702.0	4216.8	6.7819	0.008519	3670.9	4182.1	6.6725		
1000	0.014360	3952.9	4527.3	7.1355	0.011441	3927.4	4499.4	7.0131	0.009504	3902.0	4472.2	6.9099		
1100	0.015686	41/3./	4801.1	7.3425	0.012534	4152.2	4//8.9	7.2244	0.010439	4130.9	4/5/.3	7.1255		
1300	0.0103/0	4390.9 4623 3	5352 R	7.0007	0.013590	43/8.0 4607 5	5338 5	7.4207 7.6048	0.011339	4500.0 4591 R	5324 5	7.5240 7.5111		
1000	0.010200	1020.0	0002.0	/./ 1/0	0.017020	1007.0	5550.5	7.00-0	0.012210	1001.0	JJLJ	1.0111		

Compr	ressed liqui	d water										
Т	V	и	h	S	V	и	h	s	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K
	P =	= 5 MPa (263.94°C	;)	P =	= 10 MPa	(311.00°C	;)	P =	15 MPa	(342.16°	C)
Sat.	0.0012862	1148.1	1154.5	2.9207	0.0014522	1393.3	1407.9	3.3603	0.0016572	1585.5	1610.3	3.6848
0	0.0009977	0.04	5.03	0.0001	0.0009952	0.12	10.07	0.0003	0.0009928	0.18	15.07	0.0004
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951	83.01	97.93	0.2932
40	0.0010057	166.92	171.95	0.5705	0.0010035	166.33	176.37	0.5685	0.0010013	165.75	180.77	0.5666
60	0.0010149	250.29	255.36	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105	248.58	263.74	0.8234
80	0.0010267	333.82	338.96	1.0723	0.0010244	332.69	342.94	1.0691	0.0010221	331.59	346.92	1.0659
100	0.0010410	417.65	422.85	1.3034	0.0010385	416.23	426.62	1.2996	0.0010361	414.85	430.39	1.2958
120	0.0010576	501.91	507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010522	498.50	514.28	1.5148
140	0.0010769	586.80	592.18	1.7344	0.0010738	584.72	595.45	1.7293	0.0010708	582.69	598.75	1.7243
160	0.0010988	672.55	678.04	1.9374	0.0010954	670.06	681.01	1.9316	0.0010920	667.63	684.01	1.9259
180	0.0011240	759.47	765.09	2.1338	0.0011200	756.48	767.68	2.1271	0.0011160	753.58	770.32	2.1206
200	0.0011531	847.92	853.68	2.3251	0.0011482	844.32	855.80	2.3174	0.0011435	840.84	858.00	2.3100
220	0.0011868	938.39	944.32	2.5127	0.0011809	934.01	945.82	2.5037	0.0011752	929.81	947.43	2.4951
240	0.0012268	1031.6	1037.7	2.6983	0.0012192	1026.2	1038.3	2.6876	0.0012121	1021.0	1039.2	2.6774
260	0.0012755	1128.5	1134.9	2.8841	0.0012653	1121.6	1134.3	2.8710	0.0012560	1115.1	1134.0	2.8586
280					0.0013226	1221.8	1235.0	3.0565	0.0013096	1213.4	1233.0	3.0410
300					0.0013980	1329.4	1343.3	3.2488	0.0013783	1317.6	1338.3	3.2279
320									0.0014733	1431.9	1454.0	3.4263
340									0.0016311	1567.9	1592.4	3.6555
	P =	20 MPa	(365.75°(C)		P = 30	MPa		<i>P</i> = 50 MPa			
Sat.	0.0020378	1785.8	1826.6	4.0146								
0	0.0009904	0.23	20.03	0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29	49.13	-0.0010
20	0.0009929	82.71	102.57	0.2921	0.0009886	82.11	111.77	0.2897	0.0009805	80.93	129.95	0.2845
40	0.0009992	165.17	185.16	0.5646	0.0009951	164.05	193.90	0.5607	0.0009872	161.90	211.25	0.5528
60	0.0010084	247.75	267.92	0.8208	0.0010042	246.14	276.26	0.8156	0.0009962	243.08	292.88	0.8055
80	0.0010199	330.50	350.90	1.0627	0.0010155	328.40	358.86	1.0564	0.0010072	324.42	374.78	1.0442
100	0.0010337	413.50	434.17	1.2920	0.0010290	410.87	441.74	1.2847	0.0010201	405.94	456.94	1.2705
120	0.0010496	496.85	517.84	1.5105	0.0010445	493.66	525.00	1.5020	0.0010349	487.69	539.43	1.4859
140	0.0010679	580.71	602.07	1.7194	0.0010623	576.90	608.76	1.7098	0.0010517	569.77	622.36	1.6916
160	0.0010886	665.28	687.05	1.9203	0.0010823	660.74	693.21	1.9094	0.0010704	652.33	705.85	1.8889
180	0.0011122	750.78	773.02	2.1143	0.0011049	745.40	778.55	2.1020	0.0010914	735.49	790.06	2.0790
200	0.0011390	837.49	860.27	2.3027	0.0011304	831.11	865.02	2.2888	0.0011149	819.45	875.19	2.2628
220	0.0011697	925.77	949.16	2.4867	0.0011595	918.15	952.93	2.4707	0.0011412	904.39	961.45	2.4414
240	0.0012053	1016.1	1040.2	2.6676	0.0011927	1006.9	1042.7	2.6491	0.0011708	990.55	1049.1	2.6156
260	0.0012472	1109.0	1134.0	2.8469	0.0012314	1097.8	1134.7	2.8250	0.0012044	1078.2	1138.4	2.7864
280	0.0012978	1205.6	1231.5	3.0265	0.0012770	1191.5	1229.8	3.0001	0.0012430	1167.7	1229.9	2.9547
300	0.0013611	1307.2	1334.4	3.2091	0.0013322	1288.9	1328.9	3.1761	0.0012879	1259.6	1324.0	3.1218
320	0.0014450	1416.6	1445.5	3.3996	0.0014014	1391.7	1433.7	3.3558	0.0013409	1354.3	1421.4	3.2888
340	0.0015693	1540.2	1571.6	3.6086	0.0014932	1502.4	1547.1	3.5438	0.0014049	1452.9	1523.1	3.4575
360	0.0018248	1703.6	1740.1	3.8787	0.0016276	1626.8	1675.6	3.7499	0.0014848	1556.5	1630.7	3.6301
380					0.0018729	1782.0	1838.2	4.0026	0.0015884	1667.1	1746.5	3.8102

Saturate	Saturated ice-water vapor											
		<i>Specifi</i> m	c volume, ³ /kg	In	ternal er kJ/kg	nergy,	Enthalpy, kJ/kg			Entropy, kJ/kg · K		
Temp., <i>T</i> °C	Sat. press., <i>P_{sat}</i> kPa	Sat. ice, v _i	Sat. vapor, v _g	Sat. ice, <i>u_i</i>	Subl., <i>u_{ig}</i>	Sat. vapor, <i>u_g</i>	Sat. ice, <i>h_i</i>	Subl., <i>h_{ig}</i>	Sat. vapor, <i>h_g</i>	Sat. ice, <i>s_i</i>	Subl., <i>s_{ig}</i>	Sat. vapor, <i>s_g</i>
0.01	0.61169 0.61115	0.001091 0.001091	205.99 206.17	-333.40 -333.43	2707.9 2707.9	2374.5 2374.5	-333.40 -333.43	2833.9 2833.9	2500.5 2500.5	-1.2202 -1.2204	10.374 10.375	9.154 9.154
-2 -4 -6	0.51772 0.43748 0.36873	0.001091 0.001090	241.62 283.84 334.27	-337.63 -341.80 -345.94	2709.4 2710.8 2712.2	2371.8 2369.0 2366.2	-337.63 -341.80 -345.93	2834.5 2835.0 2835.4	2496.8 2493.2 2489.5	-1.2358 -1.2513 -1.2667	10.453 10.533 10.613	9.218 9.282 9.347
-8 -10	0.30998 0.25990	0.001090 0.001090 0.001089	394.66 467.17	-350.04 -354.12	2712.2 2713.5 2714.8	2363.5 2360.7	-350.04 -354.12	2835.8 2836.2	2485.8 2482.1	-1.2821 -1.2976	10.695 10.778	9.413 9.480
-12 -14	0.21732	0.001089 0.001088	554.47 659.88	-358.17 -362.18	2716.1 2717.3	2357.9 2355.2	-358.17 -362.18	2836.6 2836.9	2478.4 2474.7	-1.3130	10.862 10.947	9.549 9.618
-16 -18 -20	0.12492 0.10326	0.001088	942.51 1131.3	-370.13 -374.06	2718.6 2719.7 2720.9	2352.4 2349.6 2346.8	-370.13 -374.06	2837.2 2837.5 2837.7	2471.0 2467.3 2463.6	-1.3439 -1.3593 -1.3748	11.033 11.121 11.209	9.889 9.761 9.835
-22 -24	0.08510 0.06991	0.001087 0.001087	1362.0 1644.7	-377.95 -381.82	2722.0 2723.1	2344.1 2341.3	-377.95 -381.82	2837.9 2838.1	2459.9 2456.2	-1.3903 -1.4057	11.300 11.391	9.909 9.985
-26 -28 -30	0.05/25	0.00108/ 0.001086	1992.2 2421.0 2951.7	-385.66 -389.47 -393.25	2724.2 2725.2 2726.2	2338.5 2335.7 2332.9	-385.66 -389.47 -393.25	2838.2 2838.3 2838.4	2452.5 2448.8 2445.1	-1.4212 -1.4367 -1.4521	11.484 11.578 11.673	10.063 10.141
-32 -34	0.03082	0.001086	3610.9 4432.4	-397.00 -400.72	2727.2 2727.2 2728.1	2330.2 2327.4	-397.00 -400.72	2838.4 2838.5	2441.4 2437.7	-1.4676	11.770 11.869	10.303 10.386
-36 -38 -40	0.02004 0.01608 0.01285	0.001085 0.001085 0.001084	5460.1 6750.5 8376 7	-404.40 -408.07 -411.70	2729.0 2729.9 2730 7	2324.6 2321.8 2319.0	-404.40 -408.07 -411.70	2838.4 2838.4 2838.3	2434.0 2430.3 2426.6	-1.4986 -1.5141 -1.5296	11.969 12.071 12.174	10.470 10.557 10.644